

Mathematics 1 Reference Sheet

Lines		
Standard Form	Ax + By = C	A, B, and C are constants where $A \neq 0$ or $B \neq 0$.
Slope-Intercept Form Point-Slope Form Slope	y = mx + b $y - y_{1} = m(x - x_{1})$ $m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$	m = slope b = y-intercept (x_1, y_1) and (x_2, y_2) are 2 points.
Quadratics		
General Form	$ax^2 + bx + c = 0$	a, b, and c are constants, where $a \neq 0$
Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	where a ≠ 0.
Coordinate Geometry		
Midpoint	$\left(\frac{X_1+X_2}{2},\frac{y_1+y_2}{2}\right)$	(x_1, y_1) and (x_2, y_2) are 2 points.
Distance	$\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$	

Area, Volume, and Surface Area of Polygons and Solids

Triangle	$A = \frac{1}{2}bh$	A = area
Parallelogram	A = bh	<i>b</i> = base
Trapezoid	$A = \frac{1}{2}(b_{1} + b_{2})h_{2}$	h = height
	2 (~1 ~ ~2)	a = apothem
Regular Polygon	$A = \frac{1}{2}ap$	p = perimeter
Prism	V = Bh	V = volume
Right Prism	SA = 2B + Ph	B = area of base
Circular Cylinder	$V = \pi r^2 h$	SA = surface area
		P = perimeter of base
Right Circular Cylinder	$SA = 2\pi r^2 + 2\pi rh$	<i>r</i> = radius
Pyramid	$V = \frac{1}{3}Bh$	s = slant height
Right Pyramid	$SA = B + \frac{1}{2}Ps$	$\pi\approx 3.14$
Circular Cone	$V = \frac{1}{3}\pi r^2 h$	
Right Circular Cone	$SA = \pi r^2 + \pi rs$	
Sphere	$V = \frac{4}{3}\pi r^3$	
	$SA = 4\pi r^2$	

Interior Angles of Polygons

Degree Measure in	<u>180(n - 2)</u>
a Regular Polygon	n
Sum of Degree Measures in a Polygon	180(<i>n</i> – 2)

n = number of sides

Circles

Center-Radius Form	$(x - h)^2 + (y - k)^2 = r^2$	center (<i>h</i> , <i>k</i>)
Area	$A = \pi r^2$	r = radius
Circumference	$C = \pi d = 2\pi r$	A = area
Area of Sector	$\Delta = -\frac{\theta}{2}\pi r^2$	C = circumference
Area of Sector	$A = \frac{1}{360} M$	d = diameter
		$\theta = degree measure of central angle$
		$\pi\approx 3.14$
Right Triangles		
Pythagorean Theorem	$a^2 + b^2 = c^2$	A
Trigonometric Ratios	$\sin A = \frac{a}{c}$	
	$\cos A = \frac{b}{c}$	
	$\tan A = \frac{a}{b}$	c a B
Sequence and Series		
Arithmetic Sequence	$a_n = a_1 + (n-1)d$	<i>n</i> = term number
Arithmetic Series	$s_n = \frac{n}{2}(a_1 + a_n)$	$a_n = n$ th term
	L	<i>d</i> = common difference
		$s_n = $ sum of the first <i>n</i> terms

Interest

Simple Interest	I = prt	<i>I</i> = interest
Compound Interest	$\boldsymbol{A} = \boldsymbol{p} \left(1 + \frac{r}{n} \right)^{nt}$	p = principal
		<i>r</i> = annual interest rate
		t = time in years
		A = amount of money after <i>t</i> years
		n = compound periods per year
Miscellaneous		
Distance, Rate, Time	D = rt	D = distance
Direct Variation	y = kx	<i>r</i> = rate
(y varies directly with x)	uo	<i>t</i> = time

Indirect Variation (v varies indirectly with x)	$y = \frac{k}{x}$
(y varies munecity with x)	

k = variation constant

Key to Symbols
<i>△ABC</i> triangle <i>ABC</i>
∠ABC angle ABC
$m \angle ABC \dots \dots \dots$ degree measure of $\angle ABC$
\overrightarrow{AB} line AB
AB
ABlength of \overline{AB}
Circle OOrcle with center point O
\widehat{AB} arc AB
\perp is perpendicular to
$\parallel \ldots \ldots$ is parallel to
\cong is congruent to
~is similar to
\approx is approximately equal to

©2019 by ACT, Inc. All rights reserved.