

Physics Reference Sheet

Constants

Acceleration due to gravity on Earth	g	9.80 m/s ²
Proton mass	$m_{ m p}$	$1.67 imes 10^{-27} ext{ kg}$
Neutron mass	m _n	$1.67 imes 10^{-27} ext{ kg}$
Electron mass	m _e	$9.11 imes10^{-31}$ kg
Elementary charge	е	1.60×10^{-19} C
Coulomb's law constant	k	$8.99 \times 10^9 \ \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$
Gravitational constant	G	$6.67\times10^{-11}~\frac{\text{N}\cdot\text{m}^2}{\text{kg}^2}$
Speed of light in vacuum	С	$3.00 imes 10^8 \text{ m/s}$
Planck's constant	h	$6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$

Mechanics

$$\overline{v} = \frac{\Delta x}{\Delta t}$$

$$x = x_0 + vt$$

$$x = x_0 + v_0t + \frac{1}{2}at^2$$

$$\overline{a} = \frac{\Delta v}{\Delta t}$$

$$v^2 = v_0^2 + 2a\Delta x$$

$$F_g = mg$$

$$F_c = \frac{Gm_1m_2}{d^2}$$

$$F_c = \frac{mv^2}{r}$$

$$F_c = \frac{mv^2}{r}$$

Energy

$W = F \Delta x$	<i>W</i> = work
$P = \frac{W}{\Delta t} = F\overline{v}$	F = force
	x = position
$PE_{a} = mgh$	P = power
y = 1 2	<i>t</i> = time
$KE = \frac{1}{2}mv^2$	v = velocity
F = -kx	PE _g = gravitational potential energy
1 0	<i>m</i> = mass
$PE_{k} = \frac{1}{2}kx^2$	h = height
-	KE = kinetic energy
	k = spring constant
	PE _k = spring potential energy

continued

Electricity

$V = Ed$ $F = q_1 E = \frac{kq_1q_2}{d^2}$ $W_{a \to b} = q(V_b - V_a)$ $V = IR$ $P = V(t - t^2 R) = \frac{V^2}{d^2}$	a = obstance between two points q = charge V = electrical potential difference $W_{a \rightarrow b} = \text{work done by field on charge } q \text{ moving from } V_a \text{ to } V_b$ I = current P = power R = resistance
$P = VI = I^{-}R = \frac{r}{R}$ $R = \frac{\rho L}{A}$	$ \rho = \text{resistivity} $ L = length A = area

Circuitry

	$I_T = I_1 = I_2 = I_3 = \dots$	
Series Circuits	$V_T = V_1 + V_2 + V_3 + \dots$	
	$R_{\text{equiv}} = R_1 + R_2 + R_3 + \dots$	I = current
	$I_T = I_1 + I_2 + I_3 + \dots$	R = resistance
Parallel Circuits	$V_T = V_1 = V_2 = V_3 = \dots$	
	$\frac{1}{R_{\rm equiv}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	

Waves

$$T = \frac{1}{f}$$

$$v = f\lambda$$

$$n = \frac{c}{v}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\sin \theta_c = \frac{n_2}{n_1}$$

$$n_1 v_1 = n_2 v_2$$

Simple Harmonic Motion

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
$$x = A \cos\left[\left(\sqrt{\frac{k}{m}}\right)t + \phi\right]$$

Thin Lenses & Spherical Mirrors

$$\frac{1}{f} = \frac{1}{d_{o}} + \frac{1}{d_{i}}$$

$$h_{i} = (d_{i})$$

$$m = \frac{h_{\rm i}}{h_{\rm o}} = -\left(\frac{d_{\rm i}}{d_{\rm o}}\right)$$

T = period f = frequency $\lambda = wavelength$ n = index of refraction c = speed of light in a vacuum v = speed $\theta_c = critical angle of incidence$

- f = frequency k = spring constant m = mass x = displacement A = amplitude $\phi =$ phase angle
- f = focal length $d_o =$ object distance $d_i =$ image distance m = magnification $h_o =$ object height $h_i =$ image height