
esearcli R eport Semes 2 0 0 0

Procedures for Computing 
Classification Consistency 
and Accuracy Indices 
with Multiple Categories

Won-Chan Lee 

Bradley A. Hanson 

Robert L. Brennan

ACT O c t o b e r



For additional copies write:
ACT Research Report Series 
PO Box 168
Iowa City, Iowa 52243-0168

© 2000 by ACT, Inc. All rights reserved



Procedures for Computing Classification Consistency and 
Accuracy Indices with Multiple Categories

Won-Chan Lee 
Bradley A. Hanson

ACT, Inc. 
Robert L. Brennan

The U niversity of Iowa





Table of Contents

Page

A bstract................................................................................................................................................ iii

Acknowledgements............................................................................................................................  iv

Introduction.........................................................................................................................................  I

Classification Consistency and Accuracy.....................................................................................  3

C lassification Consistency In d ic e s ......................................................................................... 6

Classification A ccuracy In d ic e s .............................................................................................. 8

Models for Estimating Classification Indices.............................................................................  10

Beta Binom ial M o d e l ................................................................................................................. 10

IRT M o d e l .....................................................................................................................................  12

Illustrative Exam ples........................................................................................................................ 13

D a ta .................................................................................................................................................  13

Model F i t .......................................................................................................................................  14

M arginal C lassification In d ic e s ............................................................................................... 15

Conditional P ro b a b ilitie s ........................................................................................................... IS

Conclusions and D iscussion.............................................................................................................  22

References............................................................................................................................................ 26

T ab les....................................................................................................................................................  29

F igures...................................................................................................................................................  36

ii





Abstract

This paper describes procedures for estim ating various indices o f classification consistency and 

accuracy for m ultiple category classifications using data from a single test adm inistration. The 

estim ates o f the classification consistency and accuracy indices are com pared under three 

different psychom etric models: the tw o-param eter beta binom ial, four-param eter beta binomial, 

and three-param eter logistic IRT models. U sing real data sets, the estim ation procedures are 

illustrated, and the characteristics o f the estim ated indices are exam ined. This paper also 

exam ines the behavior o f the estim ated indices as a function o f the latent variable. The IRT 

model tends to provide better fits to the data used in this study, and shows larger estim ated 

consistency and accuracy. Although the results are not substantially different across different 

m odels, all three com ponents o f the m odels (i.e., the estim ated true score distributions, fitted 

observed score distributions, and estim ated conditional error variances) appear to have a great 

influence on the estim ates o f the indices. C hoosing a model in practice should be based on 

various considerations including the degree o f the m odel fit to the data, suitability o f the model 

assum ptions, and the com putational feasibility.
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Procedures for Computing Classification Consistency and 
Accuracy Indices with Multiple Categories1 

Introduction

It has been an im portant m easurem ent practice in the context of m astery or com petency 

testing to categorize exam inees by m astery and non-m astery with respect to a specific standard. 

A num ber of studies have been devoted to quantifying reliability o f mastery classifications 

(Huynh, 1976; Huynh & Saunders, 1980; Subkoviak, 1984; Berk, 1984). The term  classification 

consistency is often referred to as reliability o f classifications because the definition of 

classification consistency requires the concept of repeated testings, which constitutes the most 

essential com ponent o f reliability analyses (Feldt & Brennan, 1989). The im portance of 

classification consistency has been widely recognized, and standard 2.15 in the current Standards  

fo r  Educational and Psychological Testing  (Am erican Educational Research Association, 

Am erican Psychological A ssociation, & National Council on M easurem ent in Education, 1999) 

states that "W hen a test or com bination o f m easures is used to make categorical decisions, 

estim ates should be provided of the percentage of exam inees who w ould be classified in the 

sam e way on two applications o f the procedure. . . Since data from such repeated testings are 

seldom  available in practice, several writers proposed procedures for estim ating classification 

consistency indices using test scores obtained from a single test adm inistration by im posing 

psychom etric m odels on test scores. Huynh (1976), Subkoviak (1984), and m any others 

considered the beta binom ial model. Huynh (1990), W ang, Kolen, and Harris (1996), and 

Schulz, Kolen, and N icew ander (1997, 1999) considered item response theory (IRT). Hanson 

and Brennan (1990) com pared three different strong true-score m odels including the two- 

param eter beta binom ial, the four-param eter beta binom ial, and the four-param eter beta 

com pound binomial.

1 A previous version o f  this paper  was presented at the Annual M eeting  o f  the National Council on M easurem ent in 
E ducation , New Orleans, April 2000.



The term classification accuracy is more closely related to validity o f the classification 

system, evaluating the degree o f accuracy of the classifications based on the observed scores as 

an attem pt at classification based on true scores. Estim ates o f the various classification accuracy 

indices as well as classification consistency w ould be im portant for evaluating the psychom etric 

properties of the classification process. W ilcox (1977) describes procedures for estim ating the 

false positive and negative error rates under the beta binom ial and beta com pound binom ial 

m odels. Huynh (1980) considers an asymptotic inferential procedure for the false positive and 

negative error rates. Brennan (1981) provides a sum m ary o f various statistical procedures for 

dom ain-referenced testing, and presents a step-by-step procedure for com puting classification 

errors.

To date, most o f the literature has been focused on binary classifications (i.e., m astery and 

non-m astery); there have been relatively few attem pts to deal with the case in which each 

exam inee is classified into one o f three or more categories such as achievem ent levels based on a 

set o f standards or cu to ff scores. Som e relevant references include Huynh (1978), who 

considered m ultiple classifications and reform ulated C ohen’s coefficient kappa. Schulz et al. 

(1997, 1999) presented a new procedure for defining m ultiple achievem ent levels, and evaluated 

the procedure in term s o f classification consistency and classification errors. L ivingston and 

Lewis (1995) presented a m ethod for estim ating classification consistency and accuracy for any 

type o f test scores and provided some exam ples with m ultiple classifications. W ang et al. (1996) 

considered polytom ous IRT m odels to estim ate classification consistency indices for m ultiple 

categories defined based on polytom ous items.

As an extension and generalization o f the previous research (i.e., H anson & Brennan 

1990; Schulz et al., 1997, 1999), the present paper (1) describes procedures for estim ating 

various indices of classification consistency and accuracy for m ultiple classifications from  a 

single test adm inistration; (2) com pares the classification indices com puted under three different 

psychom etric models: the tw o-param eter beta binom ial, four-param eter beta binom ial, and IRT 

m odels; and (3) illustrates the procedures using real data sets. In addition, this paper exam ines
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the behavior o f the estim ated classification indices as a function o f the latent variable. These 

conditional probabilities will be very useful when reported in conjunction with the actual set of 

cu to ff scores. The com parison o f the IRT and two beta binom ial m odels will show how the 

d ifferences in the model assum ptions w ould affect the results o f the estim ated classification 

indices. Note that Schulz et al. (1999) provide form ulas for several classification indices under 

the IRT fram ew ork. In this paper, how ever, all the form ulas and equations for the classification 

indices are presented in a more general way so that they can be applied to both the IRT and beta 

binom ial m odels.

Classification Consistency and Accuracy

Suppose a testing procedure m easures a single latent trait, <j>, and let <t> denote a latent 

random  variable. Further let g(<j>) and Q  be the density and space of . Assum ing that the 

data to be m odeled consist o f test scores, x, from  K  dichotom ously scored items, the marginal 

probability o f the raw (i.e., num ber-correct) score is given by

Pr(A- = x ) =  JP r(X  = x\<& = </>)g(0)d0, * = 0,1.......K  . (1)

The m arginal distribution P r (X = jc )  is denoted here as / ( x ) ,  and the conditional error 

d istribution, Pr(X  -  x  | <J> = $)  is denoted as f ( x  \ </>).

The general m easurem ent situation considered here is one in which exam inees are 

classified  into one o f H  m utually exclusive categories on the basis o f predeterm ined / /  — 1 

observed score cutoffs, q ,C 2 ,...,C //_ |. Exam inees with observed scores greater than or equal to 

zero, and less than q  will be classified into the first category, and so on. The f/th  category 

consists o f test scores between c H_l and K. This m ethod will be referred to here as observed 

category classifications. Now, let l h ( h  - 1 ,2 ,.. . ,/ /  ) denote the /jth category into which 

exam inees with ch_\ < x < c j} are classified, and here c0 = 0 and c H = K  + 1. Then, the 

conditional and m arginal probabilities o f each category classification are, respectively,
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(2)
X=ch- 1

and

r C h ~ l

Pr(X  e I h ) = j j^f{x\<f>)g(<f>)d</>, h = 1 ,2 ,.. . , / / (3)
n -^cv ,

C lassification consistency is defined as the extent to which the classifications agree on the

such data from  repeated m easurem ents on a representative sam ple are rare, it has been custom ary 

to estim ate classification consistency indices based on a psychom etric m odel using test scores 

obtained from a single test adm inistration. One principal output from the analysis o f 

classification consistency with m ultiple categories is a sym m etric m arginal H  X  H  contingency 

table. The elem ents o f the H  X  H  contingency table are com posed o f the jo in t probabilities of 

the row and colum n observed category classifications. Although it w ould be possible to derive a 

num ber of different indices from  the m ultiple contingency table, two general indices o f 

classification consistency are considered in this paper: the agreem ent index P and coefficient 

kappa (Cohen, 1960). The coefficient P  is simply the sum  of the diagonal elem ents in the 

H  X  H  contingency table, and kappa, k  , is a consistency index adjusted for chance agreem ent. 

The probability o f m consistent classification is 1 -  P  . Further, suppose we separately apply each 

of H  - 1  cutoff scores to the data as opposed to applying all the cutoffs at the sam e tim e. Then, 

we can obtain H  - 1  sub-indices from analyses of H  - 1  binary contingency tables such as Pm 

and Km where m  = 1 ,2 ,.. . , / /  -  1. These sub-indices w ould be useful, for exam ple, when one of 

the m ultiple cutoff scores is considered as a m inim um  com petency level or a passing score. The 

classification consistency indices, P  and Pm , can also be com puted conditional on (j>, which 

would provide some useful inform ation for test users.

C lassification accuracy refers to the extent to which the actual classifications using 

observed cutoff scores agree with the "true" classifications based on known true score cutoffs

basis o f two independent adm inistrations of the test (or, tw o parallel form s o f the test). S ince
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(Livingston & Lewis, 1995). W hile classification consistency is defined on the basis o f two 

observed score distributions on the two alternate form s o f the test, classification accuracy is 

defined based on the bivariate distribution of the observed and true score distributions. To 

com pute the classification accuracy indices, we need to specify true cutoff scores, ,^ 2 >

which segm ent the population into H  categories based on exam inees' true latent scores. W e will 

refer to this m ethod as true category classifications. Let T, ( /  = 1,2, . . . ,H  ) denote true 

categories, which define the true status o f exam inees with < (f> < <f>j. For / = I , the condition 

is m in(^) and for I = H  , j < 0 < m a x (^ ) . As in the case o f classification

consistency, a marginal H  X  H  contingency table can be produced, which contains the jo in t 

probabilities o f observed and true category classifications, P r(X  e / ^ O e  r {) . The contingency 

table for classification accuracy is not sym m etric, however, because the two distributions used to 

create the table are different. The overall classification accuracy index, sym bolized here as y , is 

defined as the sum of the diagonal elem ents in the H  X  H  contingency table. The sum of the 

upper diagonal elem ents will indicate the overall probability o f exam inees’ obtaining observed 

categories that are higher than their true categories, and will be denoted as P + . Conversely, the 

sum  of the lower diagonal elem ents will indicate the overall probability o f exam inees' obtaining 

observed categories that are lower than their true categories, and will be denoted as P ~ . W hen 

each pair o f the observed and true cutoff scores is applied separately, H  - 1  sub-indices of 

y m , can be com puted, and P*  and P~ will becom e what usually are called a false positive and 

false negative error rates.

Figure 1 presents diagram s for m arginal classification consistency and accuracy indices 

when there are four cutoff scores. The 4x4 contingency tables are filled with the jo in t category 

probabilities. Each index is represented by the sum of the shaded cells o f the corresponding 

contingency table. For exam ple, the shaded cells in the tables in the first row correspond to 

various ways o f counting consistent classifications. Note that the contingency tables for the 

accuracy indices are not sym m etric, which leads to different values of the "+" and error rates.
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Classification Consistency Indices

W e shall assum e that, conditioned on <f) , the two raw score random  variables and X 2

on the tw o adm inistrations of the test are independent and identically distributed. Then, the 

conditional jo in t distribution of X x and X 2 is given by

f { x \ , x 2 | <p) = f { x x \<fr)f{x2 | (f)). (4)

The m arginal jo in t distribution o f X! and X 2 can be obtained by integrating the conditional 

probabilities in Equation 4 over the distribution o f <D :

/ ( x , , x 2 ) =  j f ( x lyx 2 \0)g(0)d</>. (5)
ft

A consistent classification is m ade if both x ] and x 2 for an exam inee belong to the same 

category I h . The conditional probability o f falling in the sam e category on the two testing 

occasions is

P r(X , s I h , X 2 e / J 4 >  = <!>) =
x\=ch-\

(6)

Then, the agreem ent index P  conditional on $  is obtained by

//
PU>) = Y ? x ( X l e I h , X 1 z l h \<S> = <l>). 

h=\
(7)

Applying each cutoff separately, sub-indices o f P  conditional on <f> can be obtained as

m
"2

H
£ P r(X , e l j \<s> = 4>) + (X l e Ij \ <X> = (f>)

_J = 1 j=m+\
ro =  1 , 2 , . ( 8 )

The marginal values o f the agreem ent indices can be com puted by
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p =  J p W g W r f W ,  (9)
Q

and

Pm = \P ,M )S^)d(<!>\ m = —l . ( 10)
Q

The coefficients P  and Pm represent the probability that a random ly selected exam inee is 

classified  in the same observed category on the two testing occasions. The probabilities of 

inconsistent classifications can be obtained by subtracting the probabilities of consistent 

classifications from  one.

The overall coefficient kappa when applying all cutoff scores together is

P  -  P
d o

c

where Pc is the probability o f consistent classification by chance. The chance agreem ent is the 

sum  o f squared marginal probabilities o f each category classification, which is written as

H H

Pc = £ P r ( X ,  e / , , ) P r ( X 2 e / , , )  =  £ [ P r ( X ,  e l h ) f .  (12)
h=\ h=l

The probability Pc is determ ined under two com plete random  assignm ent procedures, in each of 

which exam inees are assigned to a category according to the rule o f the marginal category 

probabilities. Note that since 1/ H  < Pc < P  , k  could be view ed as a rescaled-version o f P such 

that 0 < k  < 1. (See Huynh, 1978 for more detailed properties o f k  .) It may also be noted that 

Pc and sr are not applicable to a particular individual exam inee. Agreem ent by chance 

conditional on (f> does not m ake sense either conceptually or m athem atically—the sum of the 

squared probabilities o f each category classification given <j> will be identical to P((f>). Finally, 

applying each cutoff separately, sub-indices o f k  are obtained as
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P - Ph i 1 m e

1 -  P..„
(13)

where

m 2
II

2

p  =1 me Z P r ( X ,  E / y ) + £ P r U ,  e / , - ) m  = 1 ,2 ,. . . , / /  — 1. (14)

J  = [ j=m+1

Classification Accuracy Indices

Suppose an exam inee has an observed and a latent score: x e l h ( h = 1 ,2 ,.. . , / /  ) and 

( /  = 1 , 2 , An  accurate classification is made when h = l .  The conditional 

probability of accurate classifications is given by

y t y )  = Pr(X e l ,  \<X> = <f>), (15)

where /(=  1 ,2 ,. . . , / / )  is the category such that <j> e  , and Pr(X  e  l { | O  = </>) is com puted using 

Equation 2.

Let P + {(f)) refer to the conditional probability that an exam inee with a latent score <j) 

within the range o f a true category obtains an observed score falling in an observed category, 

which is one or m ore higher than the true category. Likewise, P~ {<p) refers to the conditional 

probability of an exam inee’s getting an observed category one or m ore low er than the true 

category. These tw o conditional error rates, respectively, are

H
P* (</>) = £ > ( ;* ■  e / , ,  I <& = * ) ,  (16)

/l=/+l

and

i-i
p-(<f,) = Y i M X  € / , ,  |d> = 0 ) ,  (17)

*1=1
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w here I (= 1,2,..., H )  is the category such that Note that the conditional accuracy indices

in Equations 15, 16, and 17 are based on the single conditional distribution o f the observed 

num ber-correct scores. The m arginal classification accuracy index, y , and the marginal error 

rates, P + and are obtained by integrating the corresponding conditional indices over the 

distribution o f <J>. The index y  refers to the probability that a random ly chosen exam inee with a 

latent score falling in a true category is classified in the sam e observed category as the true 

category. The m arginal error rates P + and P~  can be interpreted in a sim ilar m anner as the 

conditional counterparts except that now the probability is for a random ly chosen exam inee.

As in the previous section for the classification consistency indices, we can also com pute 

sub-indices o f y  when applying each cutoff separately as:

Pr(X  € I h | (t> = cj>), tj> € T, and I < m
h=\

(18)
//
^ P r ( X  e /;, | = ^), and I > m

for m = 1 ,2 ,..., H -  1. Sim ilarly, sub-indices o f the conditional error rates are obtained by 

//
pm ( 0 ) = ^ P r ( X  e / ^  | CD = a n d / < w ,  (19)

and

m
Pffj {</>) = X  P r (^  e  I h | 4> = and / > m  (20)

h=1

for m = 1 ,2,..., H  - 1. The m arginal probabilities o f y m , P*  , and P~ are obtained by 

integrating Equations 18, 19, and 20 over (D distribution, and the resulting P* and P~ are 

com parable with what people traditionally call a false positive and false negative error rates.
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Models for Estimating Classification Indices

Three different m odels are considered in this paper for estim ating the classification 

indices described in the previous sections: the tw o-param eter beta binom ial (2PB), four- 

param eter beta binom ial (4PB), and three-param eter logistic IRT models. The assum ptions 

involved in the three m odels (especially betw een the IRT and two binom ial m odels) are quite 

different, and have im portant consequences in the interpretation of the results in this study.

In general, the 4PB m odel is known to outperform  the 2PB model in fitting distributions 

of observed test scores. Tw o reasons for including the 2PB model in this study are: (a) the 2PB 

model is sim ple and often provides adequate fits in m any cases, and (b) fitting the 4PB model 

som etim es provides an upper lim it o f the estim ated true score distribution that is less than one or 

m ore o f the higher true score cutoffs, which w ould cause som e zero probabilities in contingency 

tables. The 2PB model is free from this problem  because the 2PB model always sets the lower 

and upper limit o f the beta distribution at 0 and 1, respectively.

The basic role of the m odels in estim ating classification indices is to estim ate the latent 

score distribution and predict the observed score distribution. Once the latent and observed score 

distributions are estim ated, H  X  H  contingency tables can be created, which, in turn, are used as 

a basis for com puting the classification indices considered in this paper. Note that the param eters 

of the m odels, distributions o f latent and observed scores, and all the classification indices are 

estim ated based on actual data from  a single test adm inistration.

Beta Binomial Model

For the beta binom ial m odel, the latent score (j> in all preceding equations is replaced 

with the true proport ion-correct score r  . U nder the 2PB m odel, the conditional distribution o f X  

given r  is assum ed to be binom ially  distributed, and the density o f r  is assum ed to be two- 

param eter beta with two shape param eters a  and /? (Keats & Lord, 1962). The param eter space 

of r  for the 2PB model is 0 < r  < 1. The param eters a  and /? can be estim ated using KR21 

and the first two m om ents o f the actual observed score distribution. Then, given the two
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param eters o f tho r  distribution and the assum ption of the binom ially distributed errors, the 

observed score d stribution can be estim ated. Hanson (199 !) provides a closed-form  form ula to 

com pute the observed score distribution, which can be used for both the 2PB and 4PB models.

The 4PB model considers the beta true score distribution with four param eters: tw o shape 

param eters ( a  and f3) and the lower and upper lim its o f the distribution (a and b ), which define 

the param eter space for r  , a < r  < b  . As with the 2PB m odel, the conditional error distribution 

is assum ed to be binom ial. A lthough a m ore com plicated model than the binom ial can be used 

for the error distribution (tw o-term  approxim ation to the com pound binom ial), Hanson and 

Brennan (1990) found very little difference betw een results using binom ial or the two-term  

approxim ation to the com pound binom ial as error distributions. Using the actual observed test 

scores, the true score distribution can be estim ated by the m ethod o f m om ents (Lord, 1965). 

First, the first "our m om ents o f the true score distribution are estim ated from the first four 

m om ents of the actual observed score distribution. Then, the four param eters ( a , /? , a, and b) 

o f the true score distribution are estim ated using the expressions of the param eters in terms o f the 

first four m oments. The fitted observed score distribution is obtained based on the estim ates of 

the four beta param eters using the closed-form  form ula in Hanson (1991). M ore detailed 

explanations about estim ating the beta param eters, the observed score distribution, and 

classification consistency indices for binary cases are provided in Hanson (1991).

To evaluate the behavior o f som e of the indices across the true score distribution, it is 

inform ative tc report som e conditional probabilities or distributions o f interest such as 

conditional probabilities o f inconsistent classifications, accurate classifications, error rates, and 

observed categories. M oreover, as discussed later, som e conditional probabilities are useful to 

assess validity o f the classification system  with a particular set of cutoff scores. To estim ate 

conditional distributions, it is convenient to use a set of several discrete true score points. For 

exam ple, with a set o f discrete values o f r  , each r  value can be substituted into the closed-form  

form ula in Hanson (1991) to obtain the conditional observed score distribution given r . O ther
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relevant conditional probabilities can be obtained in a sim ilar m anner. The m ethod used in this

paper to find a set o f discrete true scores is described in next section.

IRT Model

Although the basic assum ptions o f the beta binomial and IRT m odels are quite different, 

the general fram ew ork and form ulas for the classification consistency and accuracy indices hold 

for both m odels. For the IRT m odel, the ability param eter 0  and the latent random  variable 0  

are used in place o f <f) and O  in all previous form ulas for the classification indices. The

conditional probability of X  given 0 ,  f ( x \ 0 ) ,  is a function o f item  param eters, and can be

represented by a com pound binom ial distribution (Lord, 1980). These conditional observed 

score distributions can be com puted using a recursive algorithm  in Lord and W ingersky (1984). 

Kolen and Brennan (1995, pp. 182-183) provides an illustrative exam ple for using the recursive 

formula.

The integrals in equations (e.g., Equations 1, 3, 5, 9, and 10) can be evaluated by 

quadrature for the density o f 6  instead o f using the whole space o f 6 , - o o < # < o o  (Press, 

Teukolsky, Vetterling, & Flannery, 1992). If a discrete distribution o f 6  is used, the integral in 

Equation 1 for the marginal observed score distribution becom es a sum:

R

Pr(X  = x )  = ^ P r ( X  = x \ 0  = q r )irr , x  = 0 , l , . . . , K ,  (21)
r = 1

where there are R  discrete values o f 0  given by and n r = P r ( 0  = g r ) .  All the

other equations containing an integral can be replaced with sum m ations in the sam e manner. In 

this paper, the quadrature points and posterior weights for the 6  d istribution that are output in 

Phase 2 o f BILOG3 (M islevy & Bock, 1990) are used for the values o f q r and 7ir> respectively, 

and 40 quadrature points are em ployed.

To achieve com parability betw een the beta binomial m odel and the IRT model, the 0  

metric can be transform ed to the r  m etric through the test characteristic curve:
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K

T =  ^ ? T i U i : = 1 | e  =  ^) , (22)
1=1

w here U , is the random  variable representing the response to item  i. The 40 0  values are 

transform ed, using Equation 22, to r  values that are used for the beta binomial models. All the 

results in this paper pertaining to the conditional probabilities are reported on the metric o f r  .

Illustrative Examples

The procedures for estim ating classification consistency and accuracy indices are 

illustrated using real data sets, and results are com pared for the three different models. As 

H anson and Brennan (1990) recom m ended, the fit o f the three m odels to each data set will be 

evaluated first. Results reported here include som e plots o f conditional probabilities as well as 

tabulated m argir al classification indices.

Data

The W ork Keys assessm ents developed by ACT, Inc. include eight tests designed to 

m easure eight different areas o f job  skills (ACT, Inc., 1998). Data used for the exam ples in this 

paper are from four form s o f Locating Inform ation  and three forms o f A pplied  M athem atics 

adm inistered for equating in Fall, 1997. The sample sizes are about 3,000 ranging from 2,918 to 

3,275 except 'or one form of A pplied  M athem atics, which was adm inistered to 19,158 

exam inees. Ea^h form of Locating Inform ation  contains 32 dichotom ous items, and each form 

o f A pplied  M athem atics contains 30 dichotom ous items. The num ber of categories for the two 

tests is five for Locating Inform ation  and six for A pplied  M athem atics.

For the W ork Keys assessm ents, the skill levels are defined via a num ber-correct scoring 

procedure, and the 0  cutoffs are determ ined based on the IRT-estim ated domain scores using ail 

item s in the pcol (Schulz et al., 1999). The observed cutoff scores for each form are determ ined 

by searching for the integer num ber-correct scores that are as close to the 0  cutoffs as possible
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through the test characteristic curve relationship. Since the scale o f the initial set o f 0  cutoffs is 

different from the scale of the item  param eters for the data used here, the 0  cutoffs need to be 

rescaled for each test. The Stocking and Lord (1983) scale transform ation procedure is em ployed 

to obtain the transform ation param eters. The rescaled 9  cutoffs are then transform ed to true 

scores to be used for the beta binom ial models. Table 1 show s the final sets o f 0  cutoffs and 

form -specific true and observed score cutoffs for the tw o tests. The true score and observed 

(proportion-correct) score cutoffs are very close in general, w ith a m axim um  difference o f .04. 

The discrete distribution o f 0  is obtained from BILOG3 Phase 2 output based on one form  of 

each test.

Note that these data are used for convenience and illustrative purposes only, and the 

results reported here should not be viewed from any other standpoint. The purpose o f the present 

study is not to evaluate the current classification system of the particular program , but to describe 

the procedures to com pute various classification indices, discuss how to analyze the results, and 

com pare results from three different underlying models.

Model Fit

The actual observed score distributions and fitted observed score distributions for the 

three m odels are plotted in Figures 2 and 3 for the two tests. In general, the IRT model appears 

to provide fitted distributions that are closest to the actual observed score distributions. The 

fitted distributions o f the 4PB m odel are very close to the actual observed score distributions in 

m any cases, but som etim es show bias (e.g., Form A of Locating Inform ation  in Figure 2). The 

2PB model exhibits relatively inferior fits to the data com pared to the other two m odels. 

How ever, the fit o f the 2PB m odel is very sim ilar to that o f the 4PB model in such cases as Form  

D of Locating Inform ation  and Form  X of A pplied  M athem atics. Notice that the fitted observed 

score distributions for the three m odels are relatively close to each other for Forms D, X, and Z. 

In general, all three m odels appear to provide better fits to the data for A pplied  M athem atics  than
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for Locating Inform ation. It may be expected that the sim ilarity in fitted distributions would 

result in sim ilar 3stimated classification indices.

To explore further the fit o f the m odels, the actual observed proportions of exam inees and 

the estim ated proportions o f exam inees for each category are com puted and displayed in Tables 2 

and 3 for the two tests. The boldfaced num bers indicate estim ated category proportions that are 

closest to the actual values across m odels, and the underlined num bers indicate estim ated 

proportions thai are most different from the actual ones. As noted previously, the estim ated 

proportions unc.er the IRT m odel are generally closer to the actual ones than those under the 

other two m odels. The 2PB model, in general, shows the worst fitted proportions.

The better fit o f the 4PB m odel than the 2PB model is consistent with findings in 

previous research (Hanson & Brennan, 1990). The better fit o f the IRT model relative to the fit 

o f the other m odels m ight be due to the fact that the IRT model fits item scores (i.e., more 

param eters) as opposed to test scores—the beta binom ial m odels fit test scores to the data. In 

addition, scoring and scaling for the W ork Keys assessm ents are based on IRT (ACT, Inc., 1999). 

The degree of the fit o f a model to data is crucial in estim ating classification consistency and 

accuracy indices, and it will affect the actual values for the estim ates o f the indices as shown 

later.

Marginal Classification Indices

Table 4  presents the marginal classification consistency indices, P , k  , and Pc with five 

different classification types for the four forms o f Locating Inform ation. The classification type 

w here all cutoffs are applied at the same tim e is labeled "All", and m = 1,...,4  indicates 

dichotom ous situations applying only one cutoff at a time. The num bers have been rounded, and 

thus, for exam ple, 1.0 and 0.0 should be read "very close to one" and "very close to zero."

In general, the estim ates o f P  do not greatly differ for the three m odels—the m aximum  

difference is .09 between the IRT and 2PB m odels for Form C. The difference between k  

estim ates is m are substantial. Except for a few cases, the estim ates o f P  and k  are largest for the

i
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IRT model. Even if the IRT model produces the largest P  and k  estim ates, it is the 2PB model 

that shows the sm allest values of the Pc estim ates in alm ost all cases. The estim ates o f P  when 

all cutoffs are applied at the same tim e are sm aller than any estim ates o f Pm , which is consistent 

with the conjecture that it w ould be harder to make consistent classifications with more 

categories. M oreover, Pm tends to be relatively small for mid values o f m  and large for low and 

high values o f m. This is also understandable because the conditional m easurem ent errors for 

num ber-correct scores are supposed to be larger near the m iddle o f the score distribution than 

near both extrem es. As m  increases, Pc and P  tend to change in a sim ilar pattern and are 

positively correlated. How ever, as a function o f both Pc and P, k  tends to decrease as m 

increases. Lastly, notice that the estim ates o f k  for the 4PB m odel when m  = 3 and 4 are 

exceptionally sm all, which is related to the shape of the estim ated true score distribution for the 

4PB model. This issue is discussed next in m ore detail in the presentation o f results for the 

classification accuracy indices.

Table 5 sum m arizes the estim ated m arginal classification accuracy indices for Locating  

Information. The trend of the estim ated y  appears to be sim ilar to that o f estim ated P. The 

estim ates o f y  are sm aller when all cutoffs are applied together than those for any dichotom ous 

cases. Also, the estim ates of y m are sm allest when m = 2 .  A m ong the three m odels, the IRT 

model yields the highest y  for most cases. In other words, the sum of P + and P~ are sm allest 

for the IRT model. The 4PB model tends to produce the estim ates o f y  that are sm aller than 

those for the IRT model, but larger than those for the 2PB model. It can also be observed that the 

percentage o f P~ that accounts for the sum of the two error rates, P + and P~  , is highest for the 

4PB model, which appears to be due to different shapes o f the estim ated true score distributions 

for the 4PB mode! com pared to the other tw o models.

Even though the shapes (not the fit) o f the fitted observed score distributions for the three 

m odels (i.e., bell-shaped) are sim ilar, the shapes o f the estim ated true score distributions for the 

4PB model are very different from those for the other two m odels. Figure 4 presents plots of 

estim ated true score distributions for the four form s of Locating Inform ation. The estim ated true
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score distribution for the 1RT model is obtained by transform ing the 40 discrete 6  quadrature 

points to true scores using Equation 22 and directly using the posterior weights for 0  as density. 

The posterior distribution of 0  for the IRT model is obtained by using the default BILOG3 

options, which em ploys the standard normal distribution as a starting point. Note that the true 

score distribution for the IRT model is provided only for one form  because the true score 

distributions for the other form s are nearly indistinguishable. W hile the shapes o f the estim ated 

true score distributions for the IRT and 2PB m odels are close to the norm al distribution, those for 

the 4PB m odel are severely negatively skewed in m any cases, and som etim es show a J-shape. 

The extrem ely negatively-skew ed true score distributions for the 4PB model are the result o f one 

of the shape param eters being less than one.

In addition, the upper lim its o f the estim ated true score distributions for the 4PB model, 

in m any cases, turn out to be less than one and som etim es even sm aller than som e o f the higher 

true score cutoffs. A severely negatively-skew ed true score distribution with a very low upper 

limit m atched with a bell-shaped observed score distribution w ould necessarily produce high 

rates o f P~ . In Table 5, the values o f P~ for the 4PB model when m  = 3 and 4 are truly zero 

before rounding, because the true score cutoffs for m = 3 and 4 exceed the upper lim its o f the 

true score distributions. This is true only when m = 4  for Form  D, which has an estim ated true 

score d istribution that is much less negatively skew ed than the other form s. The zero density for 

true scores above the upper lim it o f the distribution may not be a critical issue because the 

density o f such high true scores will be very close to zero anyway as seen in the results of the 

o ther tw o m odels. Note that the foregoing discussion about the upper lim it param eter does not 

apply to the 2PB model, which sets the lower and upper lim its of the true score distribution at 

zero and one.

Tables 6 and 7 contain results analogous to those presented in Tables 4 and 5 for A pplied  

M athem atics. M ost observations m ade in Tables 4 and 5 are still valid for Tables 6 and 7 with a 

few exceptions. In Tables 6 and 7, the estim ates of the classification consistency and accuracy 

indices for the 4PB and 2PB m odels are, in general, very sim ilar to each other, in contrast to the
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differences seen in Tables 4 and 5. This appears to be a consequence o f the sim ilar fits of the 

two m odels to A pplied  M athem atics  data as shown in Figure 3. M oreover, Figure 5 shows that, 

for Applied  M athem atics, the estim ated true score distributions for the 4PB m odel are more 

sim ilar to those for the 2PB model showing less negatively skewed shapes than they are for 

Locating Information.

Conditional Probabilities

The results concerning conditional probabilities are presented here graphically. A lthough 

the results are displayed conditional on true scores, the sam e inform ation could be obtained 

conditional on 0 . N ote that since the 2PB and 4PB m odels use the sam e model for errors, which 

is binomial, the conditional observed score distribution given a true score is the same for the two 

models. The sam e conditional observed score distribution will, in turn, lead to the same 

conditional classification consistency and accuracy indices. Thus, a general term  “beta binomial 

m odel” is used to refer to the 2PB and 4PB m odels for the subsequent results.

Figures 6 and 7 contain plots o f estim ated conditional probabilities o f inconsistent 

classifications [i.e., 1 -  P( r )  in Equation 7] for different form s o f the two tests. T he num ber of 

hum ps is consistent with the num ber of cutoffs for each test, in general, with the peak o f each 

hum p corresponding to each observed proportion-correct cutoff score, which indicates that 

inconsistent classifications are m ore likely to occur for the exam inees with true scores near the 

observed cutoffs. On the other hand, the probability o f inconsistent classifications tends to be 

m inimal in the m iddle o f the true score distribution for each observed category. The conditional 

probability o f inconsistent classifications decreases as the true score falls farther from the 

observed cutoffs. A lso notice that the beta binom ial m odel provides probabilities o f inconsistent 

classifications that are always larger than the IRT m odel, and the differences are m ore notable at 

true score levels near the local m inima. As discussed later, these differences are related to the 

difference between the assum ptions of the two m odels.



19

Figures 8 through 11 present plots o f estim ated conditional probabilities o f falling within 

each observed category (i.e., Equation 2) using the beta binomial and IRT m odels for the two 

tests. The five (six for A pplied  M athem atics) solid lines in Figures 8 and 9 represent the 

conditional probabilities of the observed categories. As anticipated, the peak of each category 

probability falls within the range o f the corresponding true category. On the whole, the results 

for the IRT model are very sim ilar to those for the beta binomial model. How ever, the curves for 

the IRT m odel are som ew hat higher indicating higher estim ates o f accurate classifications in 

general.

Each plot in Figures 8 - 1 1  can be interpreted in the follow ing way. If a vertical line is 

drawn at a true score, the line will meet the curve for the true category corresponding to that 

score as well as som e of the other curves. (Strictly speaking, the line m eets all the curves, but 

som e of the curves have zero probabilities.) The height o f the point where the vertical line 

crosses the curve corresponding to the true category will be the conditional probability of 

accurate classifications, y{r)  (Equation 15). The crossing point o f the line and any curve lower 

than the true category can be found, and all those points will add up to the probability of 

classifications low er than the true level, P ~ ( t ) (Equation 17). Likewise, the sum  of crossing 

points o f the line and the curves above the true category will be equal to P + (r)  (Equation 16). 

For exam ple, the estim ates o f y ( r ) , P +(t ) ,  and P~ ( r )  for an exam inee with r  = .6 within a 

true level o f 2 on Form  A of Locating Inform ation  (Figure 8) are about .70, .25, and .05, 

respectively.

As another exam ple, suppose an exam inee has a true score of .84 for Form  A of Locating  

Inform ation  in Figure 8. The true score o f .84 is in the true Level 3 and also located in between 

the third true cutoff and the crossing point o f the third and fourth observed category curves. For 

this particular exam inee, the probability o f obtaining the fourth observed category is higher than 

obtaining the third one (i.e., accurate classification). Since most o f the true-score cutoffs are 

positioned slightly to the right o f the crossing points, exam inees with true scores falling in the
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small areas betw een the true cutoffs and the crossing points will have higher P + ( r )  than y { r ) , 

which is not preferable.

Although it w ould be very difficult to achieve, a statistically "preferable" set o f true score 

cutoffs corresponding to a set of observed score cutoffs w ould be set at the crossing points of the 

curves. Then, at least four desirable properties can be achieved assum ing that the conditional 

probabilities o f falling within each observed category are symm etric: (1) the probabilities of 

accurate classifications and one-less-than-true-level classifications will be the same at any true 

score cutoff, (2) the peak o f any observed category probability will be located approxim ately in 

the m iddle o f the true score interval for the particular category, (3) the probability o f accurate 

classifications will be higher than any error rates across the entire distribution o f true scores, and 

(4) the overall positive and negative error rates will be approxim ately the same. Note that the 

focus o f the discussion here is only on the statistical properties o f the cutoff scores. Indeed, m ost 

o f the com m only used standard-setting m ethods require inform ation about test content and 

exam inees' perform ance (Berk, 1996). Review s o f the num erous standard-setting methods are 

presented in Berk (1986, 1996), Shepard (1980, 1984), and Kane (1994). Recently, Reckase 

(2000) provides a sum m ary o f the process used to set the standards on the National Assessm ent 

of Educational Progress (NAEP).

For a better graphical view, the three conditional classification accuracy indices, y ( r ) , 

and P + ( r ) ,  are plotted in Figures 12 through 15 for the tw o m odels and two tests. 

Notice that there are several ranges o f true scores where P + ( r )  is larger than y ( r ) , which 

exactly correspond to the small areas discussed in the previous paragraph. In all cases, P + ( r)  

and P~( r )  exhibit a discernible trend. That is, P + ( r)  tends to rise as the true score approaches 

the next true score cutoff; and at each true score cutoff, P +(t ) suddenly drops down to be a 

m inim um  and P ~ ( t ) becom es a m axim um . As the true score diverges from each true score 

cutoff, P ~ ( t ) decreases while P + ( r )  increases until the next true score cutoff.

Figures 8 - 1 1  and 12 -  15, taken as a whole, seem to suggest that P + (r)  is larger than 

P~ ( t )  , and the true cutoffs are som ew hat higher than the corresponding observed score cutoffs.
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It should be noted, however, that the m ism atch between the true cutoffs and the crossing points, 

show n in Figures 8 - 1 1 ,  still exists even when the true cutoff and the corresponding observed 

cutoff are exactly the same. For exam ple, the true and observed score cutoffs of Level 4 for 

Form  Y, A pplied  M athem atics are the sam e (see Table 1), but the true score cutoff still does not 

match with the crossing point (see Figures 10 and 11). The less preferable sets o f cutoffs are not 

m erely due to the use of integer observed cutoffs as an approxim ation to the non-integer true 

score cutoffs. As already seen, even exactly the same true and observed score cutoffs do not 

necessarily  constitute preferable (as defined in this paper) sets o f cutoff scores.

Figure 16 illustrates, in a different way, the discrepancy betw een the positive and negative 

error rates given the true and observed score cutoffs for Form Y of A pplied  M athem atics. Some 

selected conditional probabilities o f observed scores near the true score cutoffs for Levels 2, 4, 

and 6 are plotted. The dotted lines are associated with the observed score cutoffs—the observed 

score cutoffs for Levels 2, 4, and 6 are 12, 21, and 28, respectively. Notice that the true score 

cutoffs for Levels 2 and 4 alm ost exactly correspond to the peaks o f the conditional probability 

curves associated with the observed score cutoffs. Since the observed and true score cutoffs for 

Levels 2 and 4 are alm ost equal (see Table 1), the probabilities o f the observed scores 

corresponding to the observed score cutoffs are expected to be m axim um  at the true score cutoff 

points. A ssum ing sym m etric shapes o f the observed score probabilities, which is in fact the case 

in this exam ple, this approach necessarily produces differences between the positive and negative 

error rates. For instance, focusing on Level 2, exam inees with true scores under the shaded area 

labeled as "A" have positive error rates (associated with the observed score o f 12) represented by 

the height o f the Pr(X  = 12) curve because the height is the probability o f obtaining the observed 

score o f 12 (i.e., observed level o f 2) for true scores lower than the true cutoff (i.e., true level of 

1). By contrast, exam inees with true scores under the area labeled "B" show negative error rates 

(associated with the observed score o f 11) represented by the height of the Pr(X  = 11) curve, 

which is the probability o f obtaining the observed score o f 11 (i.e., observed level of I) for true 

scores higher than the true cutoff (i.e., true level o f 2). (Note that we consider only two observed
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scores near the true cu to ff to make things sim pler, but adding all the other probability curves 

would lead to the sam e conclusion.) The overall m agnitude o f the positive error rates is clearly 

greater than that o f the negative error rates. The two error rates would be approxim ately equal in 

general, if the true score cu to ff for Level h were in the m iddle o f the peaks o f the tw o conditional 

probability curves associated with the observed score cu to ff c h and c h - 1 .  U nlike Level 2 and 

4, the true score cu to ff for Level 6 is placed in the left o f the m iddle o f the tw o curves, which 

leads to larger negative error rates for exam inees with high true scores (see also F igure 14).

Conclusions and Discussion

Using the IRT and tw o beta binomial m odels as a psychom etric tool, this paper presents 

form ulas for the various indices o f classification consistency and accuracy for m ultiple 

classifications based on test scores obtained from a single test adm inistration. The results o f this 

study indicate that all three com ponents o f the m odels (i.e., the estim ated true score distributions, 

fitted observed score distributions, and estim ated conditional error variances) had a great 

influence on the estim ates o f the classification indices. From  the exam ples presented in this 

paper, it was found that the IRT model provided a better fit to the data than the 4PB model, 

which, in turn, provided a better fit than the 2PB m odel. Consistent with findings from the 

previous study (Hanson and Brennan, 1990), the 2PB m odel tended to produce inadequate fits to 

the data in som e cases. A lthough the results were not substantially different across different 

m odels, the IRT m odel appeared to produce som ew hat higher estim ates o f classification 

consistency and accuracy.

The marginal and conditional probabilities o f inconsistent classifications for the beta 

binom ial model were larger than those for the IRT model in most cases. Som e plausible 

explanations for the phenom enon are: (1) the conditional error variance for the beta binom ial 

m odel is larger than that of the IRT model, (2) determ ination of the achievem ent levels for the 

W ork Keys assessm ents is based on IRT, and (3) the IRT model provides better fits to the data. 

The larger conditional error variance of the beta binom ial model is prim arily  due to the
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differences in the assum ptions o f the two m odels as discussed in Lee, Brennan, and Kolen (2000) 

and Lord (1 9 8 4 )-th e  beta binomial model assum es random ly parallel form s o f a test allowing an 

additional source o f errors due to form variation, as opposed to the IRT assum ption of strictly 

parallel form s, which involves a conceptual replication of a test with a set o f items having 

identical item param eters. It seems reasonable to presum e that the larger conditional error 

variance is associated with the larger classification errors.

It was also found that the difference betw een the two m odels in probabilities of 

inconsistent classifications (Figures 6 and 7) was greater near the m iddle o f the true score 

distribution for each category, where the classifications were most consistent. This is to be 

expected in that the m agnitude o f the conditional error variance (e.g., the width o f the observed 

score distribution) for an individual with a true score near a cutoff score does not have much 

influence on the probability o f classifications. By contrast, the m agnitude o f the conditional error 

variance m ore substantially affects the probability o f consistent classifications for an individual 

with a true score near the middle o f a category. For exam ple, longer tails o f the observed score 

d istribution located in the m iddle o f a category w ould cause more classification errors. The same 

sort o f argum ent applies to the case o f classification accuracy.

The 4PB m odel yielded estim ates o f classification indices that were different from those 

for the 2PB and IRT m odels in term s o f (1) the small estim ated classification consistency for 

dichotom ous classifications with high cutoffs, and (2) the large percentage o f the negative error 

rates that accounts for the total error rates. The prim ary reason was that the estim ated true score 

distributions for the 4PB model were quite different from those for the IRT and 2PB models, 

while the fitted observed score distributions for the three models were sim ilar in shape. The 

classification indices depend som ew hat on the true score distribution, which is never known. 

W hen the 4PB model was fitted to the data sets, the estim ated true score distributions turned out 

to be severely skewed. By contrast, the estim ated true score distributions for the 2PB model and 

the transform ed true score distributions o f 0  for the IRT model were close to the normal 

distribution in shape. (Note that the standard norm al distribution was used as a starting point
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with B IL 0G 3 to obtain the posterior distribution o f 6  for the IRT m odel.) This does not mean 

that the 4PB mode) is worse than the other two m odels, because we never know the shape o f the 

true score distribution. In fact, the 4PB model provided very good fits to the data. It should also 

be noted that the use o f the standard normal distribution for the IRT m odel is arbitrary, and 

im posing different priors m ight alter the posterior distribution o f 6  and, in turn, the estim ates of 

the classification accuracy indices.

The results o f this study seem  to suggest that mode! fit be exam ined prior to applying the 

estim ation procedures, because the degree o f the model fit is directly reflected in the estim ates of 

the classification indices. In addition, the decision about what model to use in practice should be 

based, at least in part, on other considerations including suitability o f the m odel assum ptions and 

availability of com puter program s. H igher values for estim ated classification indices should not 

autom atically dictate choice o f the particular model. For exam ple, if only m odel fit is considered 

as a criterion for choosing a m odel, the results of this study m ight support use of the IRT model. 

However, the random ly-parallei-form  assum ption o f the binom ial error model m ight be m ore 

realistic than the IRT strictly-parallel-form  assum ption in the sense that different forms o f a test, 

in practice, are never strictly parallel. In other words, even though data from a single test 

adm inistration are m ore consistent with the assum ption o f IRT, the m easurem ent error associated 

with the binomial model assum ption w ould be more o f interest in general. For that reason, som e 

researchers m ight prefer a model incorporating replications that are m ore flexible than strictly 

parallel form s (e.g., Brennan, 2000). O f course, if data are available from two adm inistrations o f 

a test on a representative sam ple o f exam inees, it w ould be preferable to use the data directly to 

com pute the classification consistency indices (AERA, APA, & N CM E, 1999, p. 35).

In order to estim ate the classification accuracy indices, we need to specify true cu toff 

scores as well as observed cutoff scores. It is not uncom m on in m any testing program s that the 

actual cutoff scores used operationally for a test do not differ much from true score cutoffs, 

because the procedure for defining actual observed cutoff scores often em ploys a m easurem ent 

model dealing with latent true scores, and all items in the pool are used (e.g., Schulz et al., 1999).
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In this case, the observed cutoffs w on’t be m uch different from the true cutoffs beyond the 

potential differences due to roundings. In som e other cases where true cutoffs do not exist 

specifically, the actual observed score cutoffs could be used as estim ates of true score cutoffs to 

com pute the classification accuracy indices. Or alternatively, one can find the true cutoff scores 

corresponding to the observed cutoffs through a m apping procedure using distributions of 

observed and true scores. How ever, it m ust be noted that equalizing the true and observed score 

cutoffs does not necessarily provide the optim al classification system, because it does not 

guarantee that the probability o f  accurate classifications is higher than any of the two error rates 

and that the tw o error rates, overall, are approxim ately equal.

As a final note, the cu to ff scores for the exam ples used in this paper were expressed on 

the raw score m etric. Since the prim ary score scale reported for m ost large scale tests are scale 

scores, such as percentile ranks and grade equivalents, it seem s sensible to define cutoff scores 

on the m etric of scale scores. U nder the assum ption that there exists a conversion table that 

transform s raw scores to scale scores, the raw score cutoffs corresponding to the scale score 

cutoffs could be found from the conversion table, and the procedures discussed in this paper 

could be applied to those situations.
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Theta Cutoffs and Form-Specific True and Observed Score Cutoffs

TABLE 1

Locating Information (K  = 32)

Form  A Form  B Form C Form  D

Level Oh r h c h c h Th c h Th Ch

2 -0.68 .52 16(.50) .46 15(.47) .48 15(47) .46 15(.47)

3 0.27 .66 21(.66) .60 19(.59) .61 19(.59) .60 19(.59)

4 1.73 .87 27(.84) .78 25(.78) .79 25(.78) .81 26(.81)

5 3.89 .99 31 (.97) .96 31 (.97) .97 3 1 (.97) .99 31 (.97)

Applied Mathematics (K  = 30)

Form X Form  Y Form  Z

Level Th c h ^h Th c h

2 -0.98 .41 12(.40) .41 12(.40) .41 12(.40)

3 -0.03 .57 17(.57) .58 17(.57) .57 17(.57)

4 0.73 .69 21 (.70) .70 21(.70) .69 2 1 (.70)

5 1.78 .86 25(.83) .82 24(.80) .84 25(.83)

6 2.66 .96 29(.97) .89 28(.93) .94 29(.97)

Note: 0 h = IRT 0  cutoffs; r h -  true score cutoffs; c h = observed score cutoffs. The num bers in 

parentheses are the observed proportion-correct score cutoffs.
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TABLE 2

Observed and Estimated Proportions of Examinees for Locating Inform ation

Form  Level Actual

A 1 .197

2 .314

3 .411

4 .073

5 .005

B I .204

2 .285

3 .451

4 .060

5 .000

C 1 .185

2 .290

3 .454

4 .071

5 .000

D 1 .226

2 .292

3 .428

4 .052

5 .002

IRT 4PB 2PB

.191 .214 ,226

.330 .282 .310

.396 .432 ,361

.075 .071 .096

.008 M l  -007

.224 .225 .253

.281 .253 .282

.423 .464 3 7 0

.072 .058 ,095

.001 .000 M i

.196 .207 ,225

.284 .251 -283

.441 .472 3 9 1

.079 .069 TOO

.001 .000 ML

.227 .244 .248

.295 ,274 .284

.423 .431 ,407

.051 .051 ,059

.003 .000 .001
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TABLE 3

Observed and Estimated Proportions of Examinees for Applied Mathematics

Form Level Actual IRT 4PB 2PB

X 1 .150 .150 .159 .158

2 .278 .282 .274 .286

3 .302 .297 .275 .272

4 .194 .195 .216 .202

5 .068 .069 .073 .078

6 .008 .009 .002 .005

Y 1 .143 .141 .141 .136

2 .251 .263 .263 .296

3 .322 .310 .307 .291

4 .194 .191 .199 .167

5 .085 .090 .088 .099

6 .005 .005 .002 .010

Z 1 .144 .148 .155 .152

2 .279 .284 .275 .294

3 .313 .304 .286 .280

4 .198 .196 .222 .200

5 .064 .063 .061 .070

6 .002 .005 .001 .004
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TABLE 4

Estimated Classification Consistency Indices for Locating Inform ation

r ’nfnff
IRT 4PB 2PB

Form Type P K Pc P K Pc P K Pc

A All .62 .45 .31 .57 .37 .32 .55 .36 .29

m =  1 .89 .65 .69 .87 .61 .66 .84 .54 .65

m = 2 .79 .58 .50 .78 .55 .50 .78 .56 .50

m — 3 .93 .56 .85 .89 .16 .87 .90 .45 .82

m  = 4 .99 .34 .99 1.0 .00 1.0 .99 .20 .99

B All .60 .41 .31 .55 .33 .33 .52 .32 .29

m — 1 .86 .61 .65 .86 .59 .65 .81 .49 .62

m ~ 2 .78 .57 .50 .73 .47 .50 .76 .51 .50

m  = 3 .92 .43 .87 .90 .08 .89 .90 .40 .83

/?! = 4 1.0 .15 1.0 1.0 .00 1.0 1.0 .09 1.0

C All .60 .41 .32 .54 .31 .33 .51 .30 .29

m = 1 .87 .60 .69 .86 .57 .67 .81 .46 .65

m = 2 .78 .55 .50 .74 .48 .50 .75 .49 .50

rn = 3 .92 .46 .85 .88 .10 .87 .89 .39 .82

m = 4 1.0 .19 1.0 1.0 .00 1.0 1.0 .08 1.0

D All .61 .43 .32 .55 .33 .32 .54 .33 .31

m = 1 .85 .58 .65 .82 .51 .63 .81 .48 .63

m - 2 .78 .56 .50 .75 .50 .50 .75 .50 .50

m — 3 .95 .53 .90 .92 .22 .90 .93 .35 .89

m = 4 1.0 .32 .99 1.0 .00 1.0 1.0 .08 1.0
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TABLE 5

Estimated Classification Accuracy Indices for Locating Inform ation

^  „  IRT 4PB 2PB
C utoff ____________________________________________________________________

Form Type y  p+ p -  y  p+ p -  y  p+ p -

A All .70 .22 .08 .67 .23 .10 .63 .27 .10

m  = 1 .91 .07 .02 .90 .06 .04 .88 .08 .05

m = 2 .85 .10 .06 .84 .10 .07 .84 .11 .05

m = 3 .95 .05 .00 .93 .07 .00 .92 .08 .00

m -  4 .99 .01 .00 1.0 .00 .00 .99 .01 .00

B All .69 .20 .10 .66 .21 .14 .61 .26 .13

m = 1 .90 .05 .04 .90 .04 .06 .86 .06 .08

m = 2 .84 .11 .05 .80 .11 .09 .81 .14 .05

m = 3 .95 .04 .01 .94 .06 .00 .93 .06 .01

m = 4  1.0 .00 .00 1.0 .00 .00 1,0 .00 .00

C All .68 .24 .08 .64 .24 .12 .59 .29 .11

m = 1 .90 .07 .03 .90 .06 .05 .86 .08 .06

m = 2 .83 .13 .05 .80 .13 .07 .80 .15 .05

m = 3 .95 .05 .01 .93 .07 .00 .92 .07 .01

m = 4  1.0 .00 .00 1.0 .00 .00 1.0 .00 .00

D All .71 .18 .12 .65 .22 .14 .63 .22 .14

tn — 1 .89 .06 .05 .87 .06 .07 .86 .06 .08

m = 2 .84 .10 .06 .82 .12 .07 .81 .12 .06

m = 3 .97 .02 .01 .95 .05 .00 .95 .05 .00

m = 4 1.0 .00 .00 1.0 .00 .00 1.0 .00 .00
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TABLE 6

Estim ated Classification Consistency Indices for Applied M athematics

C utoff
IRT 4PB 2PB

Form Type K Pc P K Pc P K Pc

X All .55 .41 .23 .46 .30 .23 .46 .30 .23

m  — 1 .91 .64 .75 .88 .54 .73 .87 .51 .73

m -  2 .82 .63 .51 .79 .58 .51 .79 .57 .51

m  = 3 .85 .62 .60 .80 .53 .59 .81 .54 .59

m  = 4 .94 .60 .86 .91 .35 .86 .91 .44 .85

m  = 5 .99 .44 .98 1.0 .04 1.0 .99 .19 .99

Y All .52 .38 .23 .43 .26 .23 .43 .27 .23

m = 1 .91 .63 .76 .89 .55 .76 .87 .47 .76

m = 2 .83 .64 .52 .79 .56 .52 .77 .53 .51

m  = 3 .83 .58 .59 .77 .43 .59 .80 .51 .60

/?? = 4 .91 .49 .83 .87 .22 .84 .89 .43 .81

m = 5 .99 .22 .99 1.0 .01 1.0 .98 .22 .98

Z All .54 .39 .24 .46 .29 .23 .46 .29 .23

m -  1 .91 .63 .75 .88 .54 .74 .87 .50 .74

m -  2 .81 .62 .51 .79 .57 .51 .78 .55 .51

m = 3 .85 .61 .61 .79 .49 .59 .81 .53 .60

= 4 .94 .55 .87 .91 .26 .88 .92 .41 .86

/?j = 5 .99 .33 .99 1.0 .01 1.0 .99 .16 .99
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TABLE 7

Estimated Classification Accuracy Indices for Applied M athematics

^  „  IRT 4PB 2PB
C utoff ____________________________________________________________________

Form Type y  p+ p -  y  p+ p -  y  p+ p -

X All .64 .26 .10 .57 .28 .15 .57 .28 .15

m =  1 .94 .03 .03 .91 .05 .04 .91 .05 .05

m = 2 .86 .09 .04 .84 .09 .06 .84 .10 .06

m = 3 .89 .09 .02 .86 .09 .05 .87 .09 .05

m = 4  .95 .05 .00 .93 .07 .00 .93 .07 .00

m = 5 .99 .01 .00 1.0 .00 .00 .99 .01 .00

Y All .61 .31 .09 .53 .32 .15 .53 .33 .14

m = 1 .93 .04 .03 .92 .04 .04 .91 .05 .04

m = 2 .86 .11 .03 .84 .12 .06 .82 .12 .05

m = 3 .87 .11 .02 .83 .11 .06 .86 .10 .04

m = 4 .93 .07 .00 .91* .09 .00 .92 .08 .01

m — 5 1.0 .00 .00 1.0 .00 .00 .99 .01 .00

Z All .64 .25 .11 .57 .27 .16 .57 .27 .16

m = l  .93 .03 .03 .91 .05 .04 .90 .05 .05

m = 2 .86 .10 .04 .84 .09 .07 .84 .10 .06

m = 3 .89 .09 .03 .85 .09 .06 .86 .09 .05

m = 4  .96 .04 .00 .94 .06 .00 .94 .05 .00

m = 5 1.0 .00 .00 i.O .00 .00 1.0 .00 .00
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FIGURE 2. Model Fit for Locating Information
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FIGURE 3. Model Fit for Applied Mathematics

Form X

N u m b e r-C o rre c t S core

Form Y
o.io

5 10 15 20 25

N u m b e r-C o rre c t S core

Form Z
0.10 -j —x— Actual

- o -  [RT w

0.08 - —a— 2PB /V »
• -  4PB  ^ * f k

O" 0.06 -

PU
1>

.> 0.04 -
H
<D

0.02 -

0.00 i
0 5 10 15 20 25 30

N u m b e r-C o rre c t S core



39

FIGURE 4. Estimated True Score Distributions for Locating Information
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FIGURE 5. Estimated True Score Distributions for Applied Mathematics
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FIGURE 6. Estimated Conditional Probabilities of Inconsistent Classifications
for Locating Information
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FIGURE 7. Estimated Conditional Probabilities of Inconsistent Classifications
for Applied Mathematics
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FIGURE 8. Estimated Conditional Probabilities of Observed Categories

Using IRT Model for Locating Information
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FIGURE 9. Estimated Conditional Probabilities of Observed Categories

Using Beta Binomial Model for Locating Information
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FIGURE 10, Estimated Conditional Probabilities of Observed Categories

Using IRT Model for Applied Mathematics
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FIGURE 11. Estimated Conditional Probabilities of Observed Categories

Using Beta Binomial Model for Applied Mathematics
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FIGURE 12. Estimated Conditional Probabilities of Accurate, Lower Than True Level,
and Higher Than True Level Classifications Using IRT Model for
Locating Information
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FIGURE 13. Estimated Conditional Probabilities of Accurate, Lower Than True Level,
and Higher Than True Level Classifications Using Beta Binomial
Model for Locating Information
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FIGURE 14. Estimated Conditional Probabilities of Accurate, Lower Than True Level,
and Higher Than True Level Classifications Using IRT Model for
Applied Mathematics
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FIGURE 15. Estimated Conditional Probabilities of Accurate, Lower Than True Level,
and Higher Than True Level Classifications Using Beta Binomial
Model for Applied Mathematics
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FIG U RE 16. Selected Conditional Probabilities of Observed Scores with True 
Score Cutoffs Using IRT Model for Form Y, Applied Mathematics
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