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Abstract

At many postsecondary institutions, there are two levels of first-year courses: a “standard” 

course in which most students enroll, and a “remedial” course for academically underprepared 

students. This paper is concerned with determining whether taking a remedial course increases 

the cognitive skills that students need to succeed in a standard course. The paper describes some 

indicators based on data from posttesting students (i.e., testing them after they have completed a 

remedial course). The paper also contains a discussion of how prior selection and measurement 

error in the initial placement test and the posttest affect the indicators. An example is provided 

to illustrate the indicators and the effects of prior selection and measurement error.
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Posttesting Students 
to Assess the Effectiveness of Remedial Instruction in College

A typical and important use of college entrance tests is course placement (i.e., matching 

students with instruction appropriate to their academic preparation). For example, students 

whose academic skills are insufficient for them to be successful in a standard first-year 

mathematics course (e.g., college algebra) might, on the basis of their test scores and other 

characteristics, be advised or required to enroll in a lower-level mathematics course (e.g., 

elementary algebra). On the other hand, unusually well prepared students might be encouraged 

to enroll in a higher-level course (e.g., calculus). Of course, what constitutes standard, lower- 

level, and higher-level courses varies from institution to institution.

At many postsecondary institutions, there are two levels of first-year courses: a “standard” 

course in which most students enroll, and a “remedial” course for students who are not 

academically prepared for the standard course. Often, “remedial” courses do not carry credit 

toward satisfying degree requirements. At many institutions, the lower-level course is given other 

names, such as “college-preparatory,” “compensatory,” “developmental,” or “review,” and may 

include important supplemental content, such as instruction in study skills and personal counseling. 

Carriuolo (1994) articulated differences in the meanings of the terms “remedial” and 

“developmental.” McCabe (in press) pointed out that the term “remedial,” while commonly used 

by policy makers and the general public, may have negative connotations to students and faculty. 

Furthermore, some institutions offer courses that require more knowledge and skills than the 

lowest-level courses, but less than the standard courses. For simplicity in this discussion, however, 

only a single lower-level course is considered, and it is designated “remedial.”

The percentage of postsecondary institutions with some form of placement and remedial 

instruction is about 90% (“Colleges and Universities Offering Remedial Instruction,” 1994). A



survey by the American Council on Education (1996) found that about 17% of students in 

community colleges and about 11% of students in public four-year institutions take remedial 

courses. Another survey, by the National Center for Education Statistics (1996), found that 29% 

of all first-year students take remedial courses. Whichever result is more accurate, it is clear that 

a significant percentage of college students are involved in remedial course work, according to 

the standards of the institutions in which they are enrolled.

Evaluating Remedial Courses 

Before remedial courses can be designed and implemented at an institution, 

administrators must decide to allocate resources to these tasks. This decision is often difficult, 

because the required resources may be substantial and could be allocated to other worthy 

programs or projects. From an institution's perspective, remedial instruction must improve 

students' academic skills and knowledge sufficiently for them to succeed in standard courses; 

otherwise, the institution’s resources will have been used ineffectively.

Students are similarly concerned with the effectiveness of remedial instruction. For 

example, a student who is placed in a remedial course may incur additional tuition expense 

beyond what he or she initially anticipated, and may not complete her or his degree as quickly as 

planned. Delayed degree completion can also have negative financial consequences; if the 

student does not begin full-time employment when planned, then potential income will be lost. 

If the student does not later successfully complete the standard courses (or, at least, the remedial 

courses), then the investment of time and money will have been wasted.

Aspects o f Evaluating Remedial Courses

Noncognitive variables are important when evaluating the effectiveness of a course 

placement system. Administrative data (e.g., the number of students who are tested, exempted



from testing, or who file appeals of placement decisions) can, when monitored over time, signal 

changes in how well the system is working. Data on affective characteristics (e.g., do students 

believe the advice they have been given is appropriate? Do students think that they have been 

treated well by the faculty and staff who operate the system? Do the faculty and staff themselves 

believe that their needs are considered and that their skills are effectively used?) can also, when 

monitored over time, alert staff to important changes in the system. Using standardized survey 

forms, administrators can also compare their students' opinions to those of students at similar 

institutions (ACT, 2000a).

Financial considerations are another important characteristic. Murtuza and Ketkar (1995) 

studied a course placement and advising program at an urban university for its effect on retention 

and for its cost-effectiveness. Cost-effectiveness was determined by a break-even analysis: Does 

the program increase retention enough so that the resulting extra tuition income offsets the 

program's cost? When they compared recent retention rates to those observed before the program 

began, Murtuza and Ketkar found that the program was cost-effective, but their analysis of data 

from only recent years produced an inconclusive result. Murtuza and Ketkar also found that a 

centralized program (in which staff were hired and assigned to work specifically on course 

placement and advising) was more cost-effective than a decentralized program (in which these 

functions were assigned to faculty members).

Prediction plays a significant role in evaluating the effectiveness of remedial courses. Do 

students who successfully complete a remedial course eventually succeed in the standard course? 

Do they stay in school and complete their programs? What is their academic achievement, as 

measured by course grades, overall GPA, or other criteria? Does taking a remedial course improve 

students’ chances of success with respect to these criteria, as compared to their chances of success

3



if they did not take the remedial course? Hodges (1998) showed how data from ACT’s 

Underprepared Student Follow-Up Report (ACT, 2000b) can be used to monitor the academic 

success of students who take remedial courses.

Posttesting

All the preceding issues need to be addressed in evaluating the overall effectiveness of 

remedial course placement systems, but they are beyond the scope of this paper. This paper is 

concerned with the narrower issue of determining whether a remedial course achieves its basic 

goal, to teach the cognitive skills students need to succeed in the standard course. One method for 

studying students’ educational growth is to posttest them with an equated alternate form of the 

same test used to place them into the remedial course. If:

• the placement test score is a valid measure of the knowledge and skills required for 

success in the standard course;

• the remedial course is effective in teaching students the required knowledge and skills; 

and

• an alternate form of the placement test is administered at the end of the remedial course, 

then students’ test scores obtained at the end of the remedial course should exceed their scores 

obtained at the beginning of the course. The purpose of this paper is to illustrate how this design 

can be used to assess students’ increase in cognitive skills, and to consider some of its 

limitations.

The term posttesting can be distinguished from the term retesting: Retesting involves 

repeating a placement test (the pretest), because of some reason that would lead one to believe 

that the test score obtained initially was not a valid measurement of a student’s knowledge and 

skills. Students often retest to achieve a score sufficient for placement into a standard course. In



retesting, students have not yet taken a course, and short time intervals occur between 

administrations of the test. Posttesting, on the other hand, refers to testing that occurs after the 

remedial course has been taken, the pretesting having been used to place the student in the 

remedial course in the first place. Posttesting may also be repeated until the cutoff score for 

placement into the standard course is achieved. Using assumed utilities in a decision theory 

model, van der Linden (1998) derived optimal cutoff scores for the placement test and the 

posttest.

Educational growth is often measured by subtracting each student’s pretest score from the 

posttest score. The distribution of the resulting difference scores can then be summarized (e.g., 

by the mean and variance). Difference scores are often negatively correlated with pretest scores 

(Rogosa, Brandt, and Zimowski, 1982). This phenomenon could, in principle, result from a 

weak or even negative relationship between pretest true scores and difference true scores 

(caused, for example, by ceiling effects on the test or by differential instruction to students with 

different pretest scores). More typically, this phenomenon occurs because of measurement error, 

irrespective of relationships among true scores. Consider, for example, a particular individual 

with a given pretest true score and a given posttest true score: Whatever these true scores may 

be, measurement error in the observed pretest score will be negatively correlated with 

measurement error in the observed difference score. This phenomenon can be expressed 

statistically in the classical measurement model X f = Ti + £f , where X { is the observed score,

T- is the true score, and e f is the measurement error on testing occasion i, (i= 1,2):

Corr[X2 -  X }, X } \ T, , T2 ] = -  1/-J2 . (The appendix contains a derivation of this result.)

When students are explicitly selected for a treatment on the basis of their low pretest 

scores (e.g., through a cutoff on a placement test), they are being selected partly on the basis of
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low true scores, but also partly on the basis of negative measurement errors. Given the previous 

discussion, even if all these students had zero difference in their pretest and posttest true scores 

(i.e., no true growth), they would likely have positive observed difference scores. (In other 

contexts, this phenomenon is sometimes referred to as a “regression effect” or “regression 

toward the mean.”) Thus, a positive observed score difference for students selected on the basis 

of their low pretest scores needs to be interpreted with respect to prior selection and 

measurement error.

This paper contains a discussion of indicators that are based on data collected from 

posttesting students. The discussion includes an analysis of the effects of measurement error due 

to selection using a cutoff score on the pretest. By taking into account these effects, one can 

interpret the indicators more accurately.

The indicators discussed here pertain only to the apparent effectiveness of remedial 

instruction: Do students who take a remedial course increase the skills they need to succeed in 

the standard course? The indicators do not pertain to causation (i.e., whether the increase in 

skills is, in fact, due to the remedial instruction). It is conceivable that students could acquire the 

necessary skills even if they did not take a remedial course. To investigate causation, one would 

need to obtain posttest data from a control group of students who do not receive remedial 

instruction, compute indicators for them, and compare the indicators to those of the students who 

did receive remedial instruction. Ideally, the control group would consist of students who 

needed remedial instruction (as indicated by their pretest scores), but did not receive it. Clearly, 

this sort of experimental research is rarely done. Alternatively (but less plausibly), one could 

assume that students who need remedial instruction, but do not receive it, do not experience any 

growth in their skills.



Other Ways to Measure Growth

Authors have proposed and studied other kinds of measures of growth. Rogosa, Brandt, 

and Zimowski (1982), for example, argued that deficiencies with difference scores are related to 

the amount of data collected, not necessarily to the method of measurement. They advocated 

collecting measurements at more than two points in time, and fitting growth curves to the 

resulting data.

Maris (1998) described “covariance adjustment” methods for making inferences about 

the effectiveness of remedial instruction. One application of covariance adjustment involves 

attempting to mitigate biases due to nonrandom selection by adjusting the mean difference scores 

of the treatment and control groups on the basis of other variables (the “covariates”). Of course, 

the benefit of this approach depends very much on being able to identify and collect data on the 

right covariates.

In one important application of covariance adjustment, the pretest score is used as a 

covariate. The statistical relationship between the posttest score and the pretest score among 

subjects in the control group is extrapolated to the treatment group. The difference between the 

average observed posttest score of the treatment group and the average extrapolated posttest 

score from the control group is taken as an indicator of the average treatment effect for the 

treatment group. Analogously, one could estimate the average treatment effect for the control 

group as the difference between the average extrapolated posttest score from the treatment group 

and the average observed posttest score of the control group. One could proceed further to 

estimate an average treatment effect for all students, thereby obtaining an indicator related to 

causation. We have chosen to study difference scores, rather than use the pretest scores as
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covariates, because difference scores are more easily understood by many users of standardized 

tests and by policy makers.

The dependent variables (“posttest scores”) in covariance models need not actually be on 

the same scale as the pretest scores. For example, one could use successful completion of 

relevant standard courses as dependent variables, and study the relationship between students’ 

probability of success in these courses, their pretest scores, and their enrollment in (or 

completion of) a remedial course.

A Basic Indicator of Remedial Effectiveness 

One basic indicator of the effectiveness of the remedial course is the proportion of 

students who complete it:

(i)
N

where N 0 is the number of students who enroll in the remedial course, and is the number of 

students who complete the remedial course. In the following discussion, we assume that 

N, > 0, and so I l“ > 0 .

McCabe (in press) argued that successfully completing a remedial course is a positive 

outcome, irrespective of any follow-up course work. The reason is that even if students do not 

continue their postsecondary education, those who have successfully completed remedial courses 

tend to find employment in occupations that pay substantially more than the minimum wage.

Because students drop out of a remedial course for academic as well as for non-academic 

reasons, I (1) is not purely an indicator of educational achievement. When remedial instruction is 

viewed as one component of a larger course placement system, however, l il) can be thought of 

as one indicator of the apparent effectiveness of the system.



Note that 7V; (and, therefore, I (1}) is measured without error. With respect to other 

sources of variation, however, the statistical distribution of N1 likely is related to the pretest 

scores, because students with higher pretest scores are more likely to complete the remedial 

course. Standard techniques, such as logistic regression, can be used to model the conditional 

distribution of N t , given the pretest scores.

Indicators Based on Posttesting

We now propose to describe various indicators based on posttesting and to investigate the 

effects of prior selection and measurement error on their statistical properties. With respect to 

prior selection, we make the simplifying assumption that students are assigned to the remedial 

course if their pretest scores are less than some cutoff, K. With respect to the measurement error 

issue, the only random quantities considered in this paper are measurement errors. 

Furthermore, all probabilistic statements are conditioned on the particular students who take the 

pretest and on their pretest true scores. The conditional properties could be extended to 

unconditional properties, using additional assumptions about the distribution of true scores, but 

that is beyond the scope of the paper.

One indicator of the educational effectiveness of the remedial course is the proportion of 

students who complete the remedial course and whose posttest scores meet or exceed the cutoff, 

among all students who enroll in the remedial course:

/ , 2J = 7 T ’ ®No

where (as before) N 0 is the number of students who enroll in the remedial course, and where 

N 2 is the number of students who complete the remedial course and who obtain a posttest 

(observed) score greater than or equal to K.



One can also calculate the proportion of students whose posttest scores equal or exceed 

K, among those who complete the remedial course:

N, '
(3)

where N } is the number of students who complete the remedial course, and where N 2 is as 

defined in the previous paragraph.

The counts N 0, N t 7and N 2 are illustrated in Figure 1 below. Recall that

l , n = I <2>= ^ ,  and I ts’ =^- .  Notethat 0<  l m < V s' <1 and 0<  I ,2‘ < <1.

FIGURE 1

Classification of Students According to Score on 
Pretest/Posttest and Completion of Remedial Course



Ideally, all students who complete the remedial course obtain posttest scores of K or 

higher, indicating that they all have a reasonable chance of success in the standard course. In 

this ideal situation, l <3> =1; short of this ideal, the statistical distribution of I (3> depends on the 

posttest true scores and on the statistical distribution of the measurement errors. With simple 

assumptions, properties of the distribution of I <3>, given that there has been no increase in true 

scores (and, therefore, no real gain in educational achievement) can be estimated.

Suppose student j  completes the remedial course and, therefore, has a posttest score. 

Consider the classical measurement model X (j -  Ti} +£tJ, where Xi ;. is the observed score,

Ti j is the true score, and s i j is the measurement error for student j  on testing occasion /; and 

where the measurement errors £i . are independent with mean 0 and variance a ] . If we make 

the additional assumption that the measurement errors are normally distributed, then it is possible 

to estimate the expected value of I (3>, given that the true scores have not changed:
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/ ,jj | t2, =t , ,1= — y <
1 ■' ,jJ N, j '

1 - 0 (4)

where is the standard normal distribution function, a e is the standard error of measurement,

and Tjj = X  rxx^i j -  the expression for f t j , X  is the mean pretest score in the

entire pretested group, and is the reliability of the pretest score in the entire pretested group. 

A derivation of this result is contained in the appendix.

Of course, in practical applications (where scores are bounded), the normality assumption 

about the error terms can not be true. Nevertheless, this assumption is commonly made (for 

example, in relating standard errors of measurement or conditional standard errors of 

measurement to confidence intervals for true scores).
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A value of 1131 > —— V  < i  -  <I)
N , < ]

f  \ 
K - T , ,

> would suggest that the proportion of remedial

course completers who achieved scores high enough for them to enroll in the standard course 

was greater than would be expected from the effects of random measurement error alone. The 

summation is over students who complete the remedial course (and who, by assumption, have 

posttest scores).

Note that if all students’ true scores on the pretest were equal to K (indicating that they 

were all minimally adequately prepared for the standard course) and if they nonetheless enrolled 

in and completed the remedial course, then we would require I (3) > 0.50 . If the students’ pretest 

scores were all much lower than K, then the probability that their posttest scores meet or exceed 

K due solely to measurement error would be much less than 0.50. In this case, the conditional 

expected value of 1( 3\  given no gain in true scores, would also be much less than 0.50.

By a similar argument, —— V  <
N o J

7-3>
f  w  K -  Tj j

>is an estimate of the conditional

expected value of I (2\  given that there has been no increase in true scores. Again, the 

summation is over students who complete the remedial course (and who, by assumption, have 

posttest scores).

Average Gain

A  more modest indicator of effectiveness is whether, on average, students' test scores 

improved at all after they finished the remedial course:

I ,4,= X 2 ~ X , ,  (5)
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where X , is the average score on pretesting, and X 2 is the average score on posttesting, of the

Nj  students who completed the remedial course. Interpreting I (4) is more complicated than

interpreting I (2) or I <3), because I (4) depends on the pretest scores themselves, as well as on the 

fact that students were selected on the basis of their pretest scores. Given the particular 

examinees tested, their true scores, and their selection on the basis of observed pretest scores, the 

conditional expected value of I (4) is:

measurement a e, and the true scores of the students on the first administration of the test. For 

simplicity, we have deleted the subscript on the sample size N j ; (i.e., N = N,).  A derivation of 

this result can be found in the appendix.

Although G is a function of the latent variables Tu , .. .,T1N, an estimator G can be 

constructed from the reliability and mean pretest score in the unselected group, as described 

previously. To be indicative of effective remedial instruction, an observed value of I <4) should 

exceed G .

Given the particular examinees tested, their true scores, and their selection on the basis of 

observed pretest scores, the conditional variance of I (4) is:

e X p [ - ( / C - r , , ) 2 / (2o - / ) (6)
n 42 tt ^
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Var X . - X A T .  X , . < K; (i = 1,2; j = 1 N)2 1 ' i, j  I, ] J
__e
2N

- r 2 >
N z  i

i Sisni K - T>-i)H
a2

exp2n -KJ'/-;
<x> (D2

(7)

where S*grt(x)-1, if x> 0  and S/grc (x) = -1 , if x < 0 ;  where z U2e Zdz is the

“incomplete gamma function”; and where the other symbols are as defined previously. The 

appendix contains a derivation of this result.

Note that as K - » oo, —> V ^/2 , and so the conditional variance

approaches 2<t 2c / N . With an appropriate estimate of the variance (e.g., by estimating the true

scores), one could construct an approximate confidence interval for the conditional mean (6). 

The confidence interval would, like the other quantities, be conditional on the true scores of the 

particular sample of students.

More Complex Investigations

The indicators described here are all simply averages of various types. One could 

undertake more sophisticated investigations by modeling individual students’ completion of the 

remedial course, successful posttesting, or gain scores as functions of relevant covariates (e.g., 

age, work responsibilities, other remedial courses taken). Such analyses could provide an 

institution with the capability to identify particular types of students who are more or less 

successful in the remedial course. The information from these analyses could suggest 

modifications in the remedial courses that would benefit particular groups of students.



Example

Pre- and posttest data were obtained from students enrolled in 9 two-year institutions and 

10 four-year institutions in a state postsecondary education system. In this system, placement 

decisions are made using one of two screening tests, followed, in certain cases, by the 

administration of a placement test. The two screening tests are the ACT Assessment and the 

SAT, both of which are commonly used in making postsecondary admissions decisions. The 

ACT Assessment has four subject area tests (English, Mathematics, Reading, and Science 

Reasoning) and is used by postsecondary institutions in making both admissions and placement 

decisions. Scores on each of the four subject area tests range from 1 to 36. The SAT, in 

comparison, has Mathematical and Verbal tests; scores on each test range from 200 to 800. Its 

use as a placement instrument is not as widespread as is that of the ACT Assessment.

Students whose scores on the ACT Assessment or on the SAT meet or exceed certain 

cutoffs are placed directly in standard English and mathematics courses. Those scoring below 

the cutoffs, on the other hand, are administered the COMPASS placement tests. COMPASS, a 

computer adaptive testing system developed by ACT, measures students' academic skills and 

knowledge in mathematics, reading, and writing. Scores are reported on a scale that ranges from 

1 to 99, and are interpreted as estimates of the percentage of items in a subject area item pool that 

a student can answer correctly. In the placement system in this example, placement decisions 

pertaining to standard and remedial mathematics courses are made using the COMPASS Algebra 

test. The Reading test is used to make placement decisions for courses requiring a substantial 

amount of reading (e.g., history and political science courses), and the Writing Skills test is used 

to make placement decisions for writing courses. In this system, students are usually permitted 

to take the COMPASS pretest only once, although individual institutions may make exceptions
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to this rule. When retesting does occur, the time interval between testings may be very brief, due 

to the administration mode of the test. In this example, the numbers of pretested students were: 

4,434 (Algebra), 8,563 (Reading), and 6,281 (Writing Skills).

Students who score at or above the COMPASS cutoff are placed into a standard-level 

course, and are not posttested. Students who score below the COMPASS cutoff are placed into a 

remedial course. Some of these students do not complete the remedial course. Those who do 

complete the remedial course must take COMPASS as a posttest and meet or exceed the cutoff 

before they are permitted to enroll in the standard course.

It is possible that some students, after learning that they scored below the COMPASS 

pretest cutoff, delayed their enrollment in the remedial course for a term. Students delaying 

enrollment in a remedial course beyond one term could have other educational experiences, 

whether occurring in a classroom setting or elsewhere, that make it hard to isolate the effect of 

the remedial course itself. Moreover, the minimum length of remedial instruction was two 

months (during summer school). Therefore, the data in this example were restricted to students 

with at least two months, but no more than eight months, between pre- and posttesting.

Because a few students took the COMPASS pretest more than once (in order to earn a 

score of K or higher), the highest score of those who pretested multiple times was retained for 

analysis. Some students also took the COMPASS posttest more than once. We elected to use the 

first posttest scores of such students, thereby constructing indicators of the initial effectiveness of 

the remedial courses.

Some pretested students might not have enrolled in the institution at which they pretested. 

This might occur, for example, if a student’s pretest score was lower than the cutoff, and if the 

student decided not to enroll at all in the institution, rather than take remedial courses. Such

16



students would not, of course, have any posttest scores. In the data available for this analysis, 

there was no formal indication that a student completed a remedial course; we could only infer 

that a student completed a remedial course by the presence of a posttest score. Students who 

pretested, but never enrolled in the institution are therefore counted as not having completed the 

remedial course (which would artificially lower the indicators I a) and I (2)).

The accuracy of the results also depends in another way on the representativeness of the 

data within institutions. If some institutions, for whatever reason, did not send some of their 

COMPASS posttest data to ACT, then the indicators I (1) and I (2) would be artificially lowered. 

In this example, we eliminated from the analysis institutions that did not report any posttest data 

within the two- to eight-month window. It is possible, however, that some institutions reported 

only some of their posttest data and therefore, the data from these institutions are incomplete. 

Results

Table 1 on the following page shows summary statistics (mean and standard deviation of 

COMPASS scores, and sample size) for the data. The statistics are presented separately for 

students whose pretest scores exceeded the cutoff established for the subject area (and who 

therefore enrolled in a standard course); for students whose pretest scores were lower than the 

cutoff (and who therefore enrolled in a remedial course); and for the total group of students.
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TABLE 1

Mean and Standard Deviation of COMPASS Scores (and Number of Students),
by Performance Category

COMPASS test

Student group Algebra Reading Skills Writing Skills

Scored > K on pretest; 
enrolled in standard course

Mean 
Std. dev.

46
15

(N= 1,857)

86
7

(N=5,979)

79
14

(N=4,704)

Scored < K on pretest; 
enrolled in remedial course

Mean 
Std. dev.

21
4

(N=2,577)

61
11

(N=2,584)

30
13

(N=l,577)

All pretested students Mean 
Std. dev.

31
16

(N=4,434)

79
15

(N=8,563)

66
25

(N=6,281)

The mean scores for Algebra, Reading Skills, and Writing Skills were 31, 79, and 66, 

respectively. The corresponding national mean scores for all COMPASS-tested students were 

37,77, and 61, respectively (ACT, 1998). The differences between the two sets of means are not 

large in a practical sense, given the corresponding national standard deviations of 20, 17, and 28.

As the total group sample sizes in the bottom row of Table 1 suggest, most students took 

more than one test. Of 10,591 students administered any test, about 37% took all three tests, and 

about 27% took two tests.
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TABLE 2

Summary of Indicators of Effectiveness of Remedial Instruction, 
By Remedial Course (COMPASS test)

Remedial course (COMPASS test)

Indicator
Mathematics

(Algebra)
Reading 

(Reading Skills)
Writing 

(Writing Skills)
l w = N , / N 0

22 45 27Percentage of students who 
completed remedial course

I m = n 2 / n 0
21

(17)
32

(13)
24
(6)Percentage of students who 

completed remedial course and 
who scored > K on posttest

l m = n 2 / n .
Percentage of remedial course 
completers who scored > K 
on posttest

97
(17)

71
(9)

90
(7)

i ,4>= x 2- x ,
Mean score gain of remedial 
course completers 
(Scale=l to 99)

33
(3)

17
(1)

41
(1)

Note: The numbers in parentheses are estimated expected values o f the indices assuming no change in true 
scores from pretest to posttest. The estimates incorporate effects due to selection and measurement error 
only.

Table 2 summarizes the effectiveness indicators, by remedial course and the COMPASS 

test used to place students in the course. (Indicators 1(1) —1(3> are reported as percentages.) The

percentage of these students who completed the remedial course (indicator I (I)) ranged from 22% 

in remedial mathematics courses to 45% in remedial reading courses. Such results could occur 

for a number of reasons. For example, the comparatively low completion rate for remedial 

mathematics and writing courses could indicate that these courses are more difficult than the



other courses. Alternatively, this result could occur if the students who took the remedial 

mathematics and writing courses had other characteristics (e.g., a native language other than 

English in the case of remedial writing) that were related to lower retention rates.

There is a wide divergence of findings on the percentage of students nationally who 

successfully complete remedial courses (the indicator According to a study by the

National Center for Education Statistics (1996), about 75% of students complete remedial 

courses of all types. According to a recent study by McCabe (in press), however, only about 

43% of students who enroll in remedial courses successfully complete them. According to H. R. 

Boylan (personal communication, July 25, 1999), the completion rate can sometimes be as low 

as 14% in remedial mathematics courses. The divergence of these findings may be due partly to 

differing definitions for successfully completing a remedial course.

The percentage of students who completed the remedial course and who scored at or 

above K (indicator I (2)) ranged from 21% (mathematics) to 32% (reading). When only the 

scores of the completers are considered, the percentage of students scoring at or above K 

(indicator I <3>) increases considerably, ranging from 71% (reading) to 97% (mathematics).

It is interesting to note that remedial mathematics courses were much more successful 

with respect to I (3) (97%) than with respect to I (2) (21%). This suggests that although some 

students may, for whatever reasons, decide to drop out of remedial mathematics courses, the 

students who do complete the courses benefit considerably. Similar, but less dramatic, 

differences occurred for the other two courses.

Table 2 also contains estimates of the expected percentages of students whose posttest 

scores would meet or exceed the cutoffs even if there were no change in their true scores. These 

estimates are shown in parentheses for the rows corresponding to l (2) (all students in remedial
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course) and to I <3) (remedial course completers). For both indicators, the observed percentage 

of students whose posttest scores exceeded the cutoffs substantially exceeded the estimated 

expected percentage under the assumption of no change in true scores.

The final row of Table 2 contains mean difference scores for students who completed a 

remedial course. The mean differences ranged from 17 (Reading Skills) to 41 (Writing Skills). 

The estimated expected mean differences assuming no change in true scores ranged from 1 

(Reading Skills and Writing Skills) to 3 (Algebra). Ninety-five percent confidence interval half

widths (based, like all other probabilistic quantities in this paper, on measurement error only) for 

all the estimates were less than 1. The estimated mean differences are far less than the observed 

mean differences, which suggests that the joint effects of measurement error and selection were 

small.

One can compute “adjusted mean difference scores” by subtracting from each observed 

difference score the estimated expected mean differences associated with measurement error. 

The adjusted mean difference scores were 30, 16, and 40 for the Algebra, Reading Skills, and 

Writing Skills tests, respectively. Dividing the means of the adjusted mean difference scores by 

the standard deviations of the estimated pretest true scores for the total group (see Table 1) 

provides another way to interpret score gains. The resulting adjusted mean difference scores, 

expressed in standard deviation units, were 1.9 (Algebra), 1.1 (Reading Skills), and 1.6 (Writing 

Skills).

Discussion

Although it has limitations, posttesting can provide useful information about the 

effectiveness of remedial courses. We have not surveyed postsecondary institutions to determine 

their activities in evaluating the effectiveness of their remedial courses, but we believe that the
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example presented in this paper describes one of the more concerted efforts in this area. In this 

example, pretest data were available for a reasonably large segment of students, but posttest data 

were available only for students who completed a remedial course. Although the resulting lack 

of data limits causal inferences about remedial instruction, one can construct indicators of its 

effectiveness.

The results suggest that students who completed the remedial courses offered by this 

group of institutions increased their academic skills. Mean difference scores, even when 

adjusted for the effects of selection and measurement error, ranged from about 1 to 2 COMPASS 

standard deviation units. In addition, the results suggest that students completing remedial 

mathematics and writing courses have a relatively high probability of scoring at or above the 

posttest cutoffs and, therefore, of being permitted to enroll in the corresponding standard-level 

courses. These results are consistent with those of McCabe (in press), who found that students 

who successfully complete remedial courses in community colleges are typically well prepared 

to take standard-level courses.

Because the data were subject to selection on the pretest, the indicators proposed here 

potentially can be inflated because of measurement error in the pretest. Fortunately, the results 

of the example suggest that the indicators were influenced much more by real improvement in 

students’ skills than by artifacts due to prior selection and measurement error. Although the 

results are based on data from postsecondary institutions in only one state, they should give 

confidence to practitioners at other institutions that the indicators are useful in practical 

situations involving operational course placement systems. Moreover, for individuals who want 

to estimate the size of prior selection/measurement error artifacts in their particular situations, the 

equations in this paper provide tools to do so.
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Of course, to compute the indicators discussed in this paper, an institution must first 

collect detailed and complete follow-up data on the students who receive remedial instruction. 

An institution needs to know whether or when each student completes a remedial course, as well 

as the student’s posttest score. Furthermore, the institution must be able to match all these data 

elements into a single unified record for each student. Ideally, the institution would also posttest 

a sample of students who did not take remedial courses, thereby permitting estimates of what 

students learned because they took remedial courses.
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Appendix

Proposition 1: Suppose X i =Ti +s i , O'= 1,2),  where 7  are constants and £, are

independent, normally distributed measurement errors with mean 0 and variance cr2 > 0. Then

£i j are independent, normally distributed measurement errors with mean 0 and known variance 

crl >0.  Let N 2 = ^ D} , where

Dj  = 1, if student j  completes the remedial course and if X 2 . > K\

= 0, otherwise.

( N 0 is the number of students who enroll in the remedial course. N 2 is the number of students 

who complete the remedial course, and whose posttest scores exceed the cutoff, K.) Then, the 

maximum likelihood estimator of the conditional mean E [n 2 \t2 . = T} ■ ] is:

where O is the standard normal distribution function, <j € is the standard error of measurement,

Corr[X2 - X , , X , \  T, ,T2] = -1 /V 2.

Proof: This result is a consequence of the following relationships:

Var[X2 ~ X , \  T, ,T2] = 2 o l ;  and Var[X, \ T, ,T2] = g \ .

Proposition 2: Suppose X i } = TitJ + £i }, (i = 1, 2; j  = 1 ) ,  where Ti } are constants and

(A-l)

and f Jj = X ( l - r xx) +r xxX } j . In the expression for f } ., X is the mean pretest score in the



A-2

entire pretested group, and rxx is the known reliability of the pretest score in the entire pretested

group.

Proof: Note that e [n 2 \T2j =TLi\ = £ p [ x 2) > K  | T2j = r , J  £  1 - 0
\  /

where the summation is over students who complete the remedial course. (For students who do 

not complete the remedial course, D; = 0, and this event is observed without measurement

error.) A maximum likelihood estimator for the true score T}j is f ] j = x ( \ - r xx) +r xxX l j , 

where r ^  is the reliability of the pretest score in the entire pretested group, and X  is the mean

pretest score in the pretested group (Lord & Novick, 1968). Therefore, 1 -  <£> is a

maximum likelihood estimator for 1 — 0 ( K ~ TU

)

<2\ N, m  N 2 
Estimates of the expected values of the indicators /  ------ and V ------  can then be

N, N,

obtained by dividing (A-l) by N 0 and N {, respectively.

Proposition 3: Suppose X itj = 7^  +s i j ,(i = 1, 2; j  = 1,..., N ) , where Ti - are constants and s.u. 

are independent, normally distributed measurement errors with mean 0 and variance <j ] >0.



A-3

Let X i:= — ̂ X i ; and Ti:= — (i = 1,2), and let ^  be a cutoff score.
N  >1 ’ N j=i

X, -  X , I Tw ; X , J  < K- ( i  = 1,2; 7 = 1,—, Ao] =

Then

r 2 -  t , +
A  exp -  (a: -  )1 / (2cr^)]

where is the standard normal distribution function. 

Proof: Suppose W ~ rc(o,cr2 ), and let h < 0. Then

E[W\W<h]  =

we obtain:

E[W\ W <h] =

i
h W

'V2~K
exp -  w2 / (2 c 2)] dw

0[h/ a]
. Substituting z = w2 / (2<r2) in the numerator,

J 2 e Zdz V '  J A / (2<x )
<S>[h/a]

_ ~(cr/V2^ )  exp[-ft2 / (2 cr2)] 
Of/i/c*]

(A-2)

Note that if g(w) = m exp[-u 2 ], then g(-w) = -  g(u). Therefore, result (A - 2) is also true if h > 0

Now,

E [X 2 - X ; | r . ;  X, J< K', (1 = 1,2; J = 1...../ /)  ]

= r2 -r, -£

T2 - T l - ^ - ' Z E l e I J \el j < K - T l j ].
M  j=l

(A-3)



A-4

Substituting (A-2) into (A-3), with h - K - T } ;, and a 2 -  a 2, we obtain

E [ X 2 - X ]\ T i J ; X  ,j < K\  (i = L2\  j  = 7 ,..., N)}

= t2 - t , +
N - j 2 ^ n  m K - T , j ) l a e]

(A ^)

Proposition 4: Suppose X tj = Titj + s t j7(i = 1, 2; 7 = 1,..., N ) , where T{J are constants and €i} 

are independent, normally distributed measurement errors with mean 0  and variance <j\ > 0 . 

Then:

War X ^ - X A T . -  X . .< K; (i = l,2; j  = 2 V  1,j  l,j
3c2 __s
2N

N'

where:

°*2 ( \ 
i ; Sisi K - T>j)H

0

1_
__

__
_

1
'^*

T' 1
C-.

<T2

Sign (x) = 1, if jc > 0 and Sign (jc) = — 1, if x < 0;

H(x)  = f z U2e~:dz is the incomplete gamma function; and 
Jo

O is the standard normal distribution function.

Proof:

Var[x2 - x ,  | Tu ; X tj  <K  j =  Var[x2 \ Tu ; X tJ < k \  + Var[x,  \ Tu ; X Lj < k \
(A-5)



A-5

Furthermore,

Var ; X 1 } <K = E f hK ; X } j <K
\

V  w [ - ( j r - 7 - , ;.)2 /<7£2] 

\ 2 n J ^ [ ( / r - r ^ / c T j
(A-6 )

with the last term a consequence of (A-2).

Let W ~ n(0,a2). Then, £• [w2 | W < ft]

f w 2<f>{w)dw =  ^ j =  f z '/2 e~z d zj-co Jh-/(2cr-)

j• h 2
w (f>(w) dwJ *05

®[h/a]
. If h < 0, then

<7 ~

—  - 4 -^2 2a

2 \

where H(t) = f z}̂ 2 e z dz is the incomplete gamma function, as previously defined. (Note thatJo

H(oo) = 4 ft/2  .) If h > 0 ,  then

<J2 f AV(2ff3)r 2 js \ j  & c  r i[ > 1/2 -  jw <p{w) dw -  —  + —■== z e ' dz
J -  2

J7ra
+ f/

v2 cr2,

Therefore,

ct2 / 2  +  (cr2/y[ir)Sign(h)H(h2/2cT2)
<d[a /

(A-7)

where Sign(;c) = l, if jc > 0 and Sign (*) = — 1, if jc < 0. On substituting the result (A-7) into 

equation (A-6 ), with h -  K - T } . and cr2 = cr2 , we obtain:



A-6

4 * - r w Vci , ]
(A-8)

exp
2 n

O ^ A T - r ^ V o . J

The formula for the variance follows from substituting (A-8 ) into (A-5).
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