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Abstract

Unidimensionality in the traditional IRT model has been regarded as a strong assumption. 

Many researchers agree that psychological/educational tests are sensitive to multiple 

traits, implying the need for multidimensional item response theory (MIRT). One fact 

that limits the application of MIRT in practice is difficulty in establishing equivalent 

scales based on multiple traits. Several solutions for this problem have been proposed. In 

this study, two MIRT linking methods, recently developed by Oshima, Davey and Lee 

(2000) and Li and Lissitz (2000), respectively, are investigated based on the accuracy and 

stability of multidimensional scale transformations under several testing conditions. Real 

testing outcomes, as well as simulated data, are analyzed for the comparison. The results 

show that Oshima et al.’s method performs well in transforming overall true test scores, 

and that Li and Lissitz’ method has an advantage o f maintaining test dimensional 

structures through orthogonal rotation. The limitations and cautions in using 

multidimensional scaling techniques are discussed.





Traditionally, IRT models have been developed with the assumption of 

unidimensionality; the item-person interaction is modeled with a single latent trait. However, the 

mechanisms and cognitive processes that an examinee uses to respond to test items do not seem 

so simple, and many psychological and educational researchers agree that multidimensional 

abilities/traits come into play in test performance (Ackerman, 1991; Reckase, 1985, 1995; Traub, 

1983). Most IRT linking methods have been based on unidimensional item response theory 

(U1RT) model. UIRT linking makes adjustments for different scales (i.e., origin and unit of 

scale) (Lord, 1980). When the goal is to establish comparable scores on tests that are affected by 

more than one dimension, however, the directions of dimensions also need to be adjusted to 

obtain equitable meaning. That is, multidimensional item response theory (MIRT) models are 

directionally indeterminant as well as scale in determ inant. Therefore, MIRT linking requires a 

composite transformation of rotation and scaling to derive comparable scores.

Purpose o f the Study

While several MIRT linking methods have been developed and share some common 

ground (Hirsch, 1989; Li & Lissitz, 2000; Oshima, Davey, & Lee, 2000; Thompson, Nering & 

Davey, 1997), each of them shows unique properties in terms of statistical characteristics and 

optimization criteria (i.e., what is to be minimized or maximized). Because it is not known 

whether different MIRT linking methods lead to the same/similar conclusions o f metric 

transformation, careful consideration should be taken when applying any specific linking 

technique according to properties o f each method and the goal o f linking.

The purpose o f this study is to evaluate two recent MIRT linking methods (i.e., Li &
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Lissitz, 2000; Oshima et al., 2000) in terms of the accuracy and stability o f scale transformations 

across various testing conditions (e.g., different sample sizes, structures of dimensionality and 

shapes of true ability distributions). Both simulation and real data analyses were conducted.

MIRT and Linking Methods

MIRT Models

Two types of models have been referred to in MIRT, i.e., compensatory and 

noncompensatory models. These are different with regard to relationships among the ability 

dimensions that define a person’s item responses. In compensatory models (Lord & Novick, 

1968; McDonald, 1967; Reckase, 1985; 1995), the proficiencies are additive in the logit, such 

that low ability on one trait can be compensated by high ability on other trait(s). In 

noncompensatory models (Sympson, 1978), a multiplication of the proficiencies bases the 

probability o f getting an item right such that one lowest trait value among dimensions sets the 

upper limit of the probability. Since most research on MIRT linking has used compensatory 

models (partly because of estimation difficulties in the noncompensatory model) and these two 

types of MIRT models are indistinguishable from a practical stand point (Spray, Davey, Reckase, 

Ackerman, & Carlson, 1990), the compensatory model is considered in this study.

A compensatory multidimensional extension o f the two-parameter logistic (2PL) model 

with m dimensions is (Reckase, 1985; 1995)

exp(a!0, + d )
P(U0 = l|a ,.,< /„e ,)= -------- , (1)

J 1 + exp(a,6 - + d t )

where P{u(j  =\\a i ,d i ,QJ ) is the probability of a correct response for examinee j  on test item /,



Uy is the item response for person j  on item i (1 correct; 0 wrong), a z- is a vector of 

discrimination parameters o f item /, d  is a parameter related to item difficulty o f item /, and Qj

is a vector o f theyth examinee’s abilities.

Compared with unidimensional IRT models (UIRT), multidimensional item 

discrimination and person ability parameters are denoted in the form of vectors rather than 

scalars, and the difficulty-related parameter is a composite of item difficulty and discrimination 

on each dimension. Interpreting MIRT discrimination parameters is analogous to UIRT 

parameters, but each element o f the vector implies a direction in the dimensional space. The 

meaning o f MIRT difficulty parameter is not directly equivalent to that o f the unidimensional 

difficulty parameter because o f a different parameterization. In fact, two MIRT statistics were 

developed to capture item characteristics corresponding to UIRT item discrimination and 

difficulty.

The discrimination power of a multidimensional item in the dimensional space can be 

defined as a function o f item discrimination parameters (Ackerman, 1994; 1996, Reckase, 1985; 

1995; Reckase & McKinley, 1991)

\l /2
MDISCj = i x 'ik (2)

where MD!SCi denotes the ith item’s discrimination , m is the number of dimensions in the 

ability space, and aik is the /th item’s discrimination on the kth dimension .

The multidimensional item difficulty equivalent to unidimensional difficulty is
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MDIFFj = ----- —  , (3)
M DISCj

where MDlFFi is the distance between the origin and the steepest point of the item response 

surface.

The direction of multidimensional discrimination and difficulty in the dimensional space 

is given by

a si = arccos------------ (or cos ar.-t = ------------) ,  (4)
lk MDISC i MDISCj

where a lk is an angle between the &th dimension and item vector.

As is shown in Equation (1), the probability of the correct answer is a linear function of 

item (a  and d ) and ability (0 )  parameters in the exponent. Therefore, any linear transformation 

of an ability scale holds for a given response pattern if item parameters are transformed 

accordingly. In other words, the probability that an examinee gets an item right is identical when 

the IRT scale is changed properly. This is referred to as scale indeterminacy (Baker, 1992; Kolen 

& Brennan, 1995). While scale indeterminacy (location of the origin and the unit of scale) is 

considered in finding a proper transformation in URT linking, the rotation for the comparable 

reference system as well as the scale alteration has to be considered in MIRT due to multiple 

dimensions.

Linking Methods

Even though modeling more than one dimension often improves the model fit, the use o f 

MIRT models are limited in testing practice (Gosz & Walker, 2002; Reckase, 1997). One reason



is the difficulty in finding comparable multidimensional scales across different test forms or 

examinee groups (Oshima et al., 2000). Several multidimensional linking methods have been 

proposed (i.e., Hirsch, 1989; Li & Lissitz, 2000; Oshima et al., 2000; Thompson et al., 1997); 

two recent MIRT linking methods, Oshima, Davey and Lee’s method and Li and Lissitz’s 

method are used in the study.

Oshima, Davey and Lee's method. Oshima et al.’s linking method (2000), (ODL 

method), is based on the common item design: a set o f common items on multiple test forms are 

used to find a common scale. Transformations of the compensatory multidimensional model with

the exponent a’-G, + d {, are conducted using the following set of equations

5

a*=(A  V a ,,

d ^ = d f - a,A Jp ,an d

(5)

(6) 

(7)

where A is a rotation matrix and p is a scaling vector, and the asterisk (*) indicates transformed 

parameters. Two linking components, A and p are obtained by minimizing differences between 

test characteristic functions of common items on two test forms. Here the rotation matrix A does 

two functions: (a) determines a proper dimensional orientation (covariance/correlation), and (b) 

adjusts the variances o f the ability dimensions. The translation vector p locates the origin by 

altering means.

The equality o f the transformed exponent and the original exponent is established as
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a;*e * +rf*=(a;.A -')(A e/ +P) + (d, -a;-A -'p) = a ' f l j+ d , .  (8)

Oshima et al. provided several statistical procedures to estimate transformation 

parameters and to evaluate linking results. They reported that the test characteristic function 

(TCF) method was best at finding the rotation matrix, and was also relatively good at finding the 

translation vector.

Li and Lissitz’s method. Li and Lissitz’s method (2000), (LL method), uses the following 

set of equations to transform exponential components o f a f0 • + d t

a* = ka)T, (9)

d} = d i + a,Tm , and (10)

e* = (i/* )(T ''e j-m ), ( i i )

where T is an orthogonal rotation matrix for direction, m is a translation vector for location, and 

A; is a central dilation constant for unit. The rotation matrix, T is obtained by orthogonal 

Procrustes solutions, and m and k are calculated by minimizing differences between base and 

transformed discriminations and difficulties o f common items, respectively. The equality o f the 

transform components and the original components is established as

a-6* +</*=(Jfca].TXl/*XT"le y -m )  + (4 : +a]-Tm) = a-0_/ +d{. (12)

Note that Equations (5) to (7) are mathematically equivalent to Equations (9) to (11)



except for pre-multiplication or post-multiplication o f the rotation matrix.

Li and Lissitz tried to provide a multidimensional linking method by taking into account 

three linking components, i.e., rotation, translation, and central dilation (refer to Schonemann, 

1966; Schonemann & Carrol, 1970). It is straightforward in that three linking components can 

provide useful information to compare different test forms or different examinee groups even 

though initial procedures were developed from the anchor item design. While the ODL method 

deals with dimensional direction and unit change at once in the rotation matrix, the LL method 

splits these two components into the rotation matrix and the central dilation. Here, ‘central’ 

means that unit changes are assumed to be similar across dimensions such that one scalar (k) can 

cover overall unit changes.

Method

Simulation Data Analysis

It is recommended to use simulation data to evaluate linking methods in order to separate 

the effect o f model misfit and linking errors (Bolt, 1999; Davey, Nering, & Thompson, 1997). 

Since we can know true parameters in the simulation study, it is easier to compare true 

parameters with their estimates.

Linking design and specification o f the item response model. Two test forms sharing a set 

of common items were used, the so-called common item design. Suppose one form is the base 

test and the other is the linked test, and each o f them include common items and unique items. 

The linked test scores need to be converted into base test scores. The common item set was used 

as a way to find a comparable test scale. In order to calibrate item and ability estimates, a 

compensatory two-dimensional 2PL model was used as Equation (1).

Generation o f  true item parameters and item response patterns. Item parameters were



drawn from probability distributions of where the ranges were determined by the specification of 

dimensional structures. Two types of item dimensional structures were investigated: approximate 

simple structure (APSS) and mixed structure (MS). These two structures have been discussed as 

being more realistic than the simple structure (SS) that is an ideal one (Kim, 1994; Roussos, 

Stout, & Marden, 1998). APSS means that each item highly but not fully loads on one o f the 

dimensions. In other words, a set of items has high discriminations on the same dimension. 

However, in reality test items likely measure some composite of dimensions as well as pure 

dimensions. MS refers to a test that measures both relatively pure trait dimensions and 

composites o f dimensions. For the present simulation, APSS was constructed by two sets of 

items. One set o f items loaded mainly on the first dimension and the other set loaded on the 

second dimension, in MS, there were four sets of items. Two sets loaded heavily on one o f the 

two dimensions and the remaining two sets were loaded to composites of the two dimensions. 

These two-dimensional structures for the 20 common items are illustrated in Figure 1.

In order to define item parameters, fixed values of MDISCs and MDIFFs generated by 

Roussos et al. (1998) are given in Table 1.

TABLE 1

Five MIRT Discrimination and Difficulty Levels
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Level MDISC MDIFF
1 0.4 -1.5
2 0.8 1.0
3 1.2 0.0
4 1.6 -1.0
5 2.0 1.5

Mean 1.2 0.0

These two sets o f MIRT characteristics were selected because they are realistic, cover 

item features usually found on a test, and they do not relate dimensionality and item difficulty



levels (Roussos et al., 1998). There are five sets o f MDISCs and MDIFFs, so four o f the 20 

common items had each set. Discrimination and difficulty-related parameters were determined 

by Equations (2), (3), and (4). A set of item parameters that were used for the present simulation 

is given in Table 2.

TABLE 2

Item Parameters of 20 Common Items

ITEM APSS MS
ai a2 ai a2 d

1 0.40 0.03 0.40 0.03 0.60
2 0.80 0.07 0.78 0.17 -0.80
3 1.19 0.16 1.20 0.07 0.00
4 1.56 0.34 1.60 0.10 1.60
5 2.00 0.04 1.98 0.29 -3.00
6 0.40 0.05 0.34 0.21 0.60
7 0.78 0.17 0.71 0.36 -0.80
8 1.20 0.06 1.01 0.64 0.00
9 1.60 0.11 1.25 1.00 1.60
10 2.00 0.09 1.68 1.08 -3.00
11 0.04 0.40 0.25 0.31 0.60
12 0.15 0.79 0.47 0.65 -0.80
13 0.09 1.20 0.64 1.01 0.00
14 0.16 1.59 0.75 1.41 1.60
15 0.47 1.94 1.03 1.71 -3.00
16 0.08 0.39 0.03 0.40 0.60
17 0.04 0.80 0.10 0.79 -0.80
18 0.30 1.16 0.14 1.19 0.00
19 0.37 1.56 0.34 1.56 1.60
20 0.23 1.99 0.21 1.99 -3.00

Mean 0.69 0.65 0.75 0.75 -0.32
SD 0.66 0.69 0.57 0.60 1.59

Given the MIRT item parameters, the response probability Py was computed for each 

examinee. Then Py was compared to a uniform random value P* where 0 < P* < 1. A binary 

item score of xy = 1 was assigned when Pij>P+. Otherwise, a score of xy = 0 was assigned.

Specification o f examinee ability distributions. Five multivariate normal distributions



with various means and variances/covariances were considered for examinee true abilities (Table 

3). Different distributions reflected different examinee groups across multiple test forms. The 

distribution o f Group 1 is the default ability distribution (standardized bivariate normal 

distribution) assumed in MIRT calibration programs (e.g., NOHARM, Fraser, undated).

TABLE 3
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Ability Distributions for Five Examinee Groups

Group 1 Group 2 Group 3 Group 4 Group 5
Mean,
Variance/
Covariance

'o '
0 5

"1 O' 
0 1

'o '
0 *

'1 .5" 
.5 1

.5
_.5_5

'1 .5" 
.5 1

'.5*
_.5_

*
'.8 .4" 
.4 .8

".5"
.5

'1.2 .5" 
.5 .8

Correlation .00 .50 .50 .50 .51

For Group 2, true abilities were assumed to have moderate correlation ( p  =0.5). Because 

a calibration program assumes independent dimensions, the direction o f dimensions becomes 

arbitrary and sample specific. It should be noted that item discrimination estimates reflect the 

correlation among ability dimensions when independent dimensions are calibrated. In Group 3, a 

different mean vector from the default of zero for both dimensions was considered. For the last 

two groups, variances of abilities varied, but the correlations of two dimensions were maintained 

at about .5.

The number o f  examinees. Generally, 2000 or more examinees seem to be sufficient for 

MIRT calibration. In order to evaluate the stability o f linking for small sample sizes, relatively 

small numbers of examinees (500 and 1000) along with the recommended size of 2000 were 

used.

Number o f replications. With two-dimensional structures, three sample sizes and five 

ability distributions, there were thirty combinations of simulation conditions. Fifty test response 

patterns were generated for each combination.



Calibration and linking. Before conducting linking, item parameters were estimated with 

NOHARM. Following the common item design, estimates o f common items were transformed to 

the initial item parameters that were provided in Table 2. Two sets o f the common item estimates 

through two independent calibrations were used for the base and the linked scale separately. In 

the simulation study, the item parameters were used as the base scale, and the estimates under 

various conditions were used as the linked scale.

The two linking methods, the ODL and LL linking methods, were compared based on 

how closely item estimates were transformed into item parameters, i.e., degree o f parameter 

recovery. For each method, there were several sub-procedures, which resulted in slightly 

different transformations. One relatively best sub-procedure was selected for each method: the 

test characteristic function procedure (TCF) for the ODL method and the composite procedure of 

orthogonal Procrustes solutions for the LL method.

Several computer programs were used in the simulation study. In order to generate ability 

distributions that are multivariate normal with given means and variances/covariances, 

GENDAT5 (Thompson, undated), a modified version of NOHARM (Thompson, 1996; Fraser, 

undated) was used. IPLINK (Lee & Oshima, 1996) and MDEQUATE (Li, 1996) were run to 

implement the two linking methods, respectively.

Evaluation criteria. Although the ODL and LL linking methods easily apply to other 

linking designs, they were originally developed for the common item design. In the IRT 

framework, one of the evaluation criteria for the common item linking is how small the 

differences are between base estimates and transformed estimates. Adopting the statistical 

concepts o f accuracy and stability, two summary statistics were used as evaluation criteria: (a) 

how far transformed values depart from initial item parameters (bias), and (b) how much



12

differences fluctuate (root mean square error, RMSE) across common items. Bias and RMSE 

were computed by

£ (“ i , - ‘' i , ) , and (13)
1=1 1

( i V /2

— -------------- , (14)/ - I

v J

A ^  «respectively, where au is the discrimination parameter on the first dimension of item i , ah is

the transformed discrimination, and /  is the number o f common items.

The same formulas were applied to other item characteristics; discrimination on the 

second dimension (a2) and difficulty related parameters (d). As each item has three parameters 

and transformed values, there are three sets of bias and RMSE for each replication.

Because two linking methods were applied to the same test response patterns, the 

repeated measures analysis of variance was used to detect effects of simulation conditions and 

linking methods on bias and In (RMSE).1 The model is

Bias(a, =M + P.+rg+ K  + M*, + *W) + a i + + «/ig + a A  + a r \ ,  + «/,(,*,).

( 15)

where Bias{ax) h is bias o f the first dimensional discrimination for /th linking method, /th 

iteration, wth sample size, gth group and 5th structure; // is overall mean in population; p n is

1 In order to obtain a more desirable distribution (normality), a natural logarithm was taken for RMSEs.



effect o f nth sample size (500, 1000 and 2000); y is effect o f gth group (Groups 1 to 5); Xs is 

effect of sth dimensional structure (APSS and MS); yAgs is interaction effect of group and 

structure; Xi(ngs) >s effect o f /'th iteration within nth sample size, gth group and 5th structure 

(iteration 1 to 50); a / is effect of /th linking method (the ODL and LL methods); aj3[n is 

interaction effect of linking method and sample size; a / lg is interaction effect of linking method 

and group; aX(s is interaction effect of linking method and dimensional structure; a y \  is 

interaction effect of linking method, group, and dimensional structure; and efii  ̂ is interaction

effect o f linking method and iteration within «th size, gth group and sth structure.2

In the model o f Equation (15), there are three between-factors; sample size, group and 

structure. The interaction term of between-factors was selected based on the initial examination 

of full model results. Also there is one within-factor, linking method, and others are interaction 

terms of between- by with in-factors. Equation (15) is the model for the bias o f the first 

dimensional discrimination and the same model applies to other bias measures and log 

transformed RMSE for all three item parameters. After conducting statistical tests, patterns of 

biases and RMSEs were examined in detail across simulation conditions and linking methods.

Real data analysis. Simulation data have advantages in that they can clarify which 

factor/condition(s) leads to favorable or unfavorable results, because one knows the true model 

and parameters. However, statistical models including measurement models emulate real 

situations at best, they are not reality itself. So the overall evaluation of simulation studies

2 Statistical tests o f the repeated measures analysis o f variance model are based on the symmetry condition: 1) the 
variance-covariance matrix of transformed variables used to test effects has covariances o f zero and equal variances 
(sphericity), and 2) the variance-covariance matrix must be equal for all levels o f between subject factors 
(homogeneity).
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depend on how plausible the assumed conditions and following resultant data are. One way to 

scrutinize a simulation study is to compare its results with real data, and see if both lead to 

consistent conclusions.

For this purpose, actual test response data was analyzed. Test items for the real data were 

from a readiness test, designed to measure two distinguishable traits. There were different 

readiness test forms, and all forms consisted of 40 items; 25 for reading and 15 for mathematics. 

Among 40 items, 12 reading items and 10 mathematics items were common items across 

different test forms. Sample sizes for each form were relatively small. In real data analyses, the 

differences between base test item estimates and the transformed estimates were evaluated. In 

addition to the item level comparison, the differences o f true scores using the test response 

surfaces, were examined for two linking methods.

Results

Simulation Study

Linking errors for each replication of 20 common items were summarized by two 

statistics, mean and standard deviation of differences between transformed values and item 

parameters. These two statistics were considered as indicators o f the quality o f linking for each 

replication. After finding significance of multivariate statistics in Equation (15), univariate tests 

for six dependent variables were implemented. The results are provided in Table 4. The 

statistical test results indicated that the effects of linking method depend on simulation 

conditions (i.e., significant results for within-factor interaction terms). In addition to the 

interaction o f between- by within-factors, three main factors o f the simulation conditions had 

significant effects on linking bias and log transformed RMSE. The bias of the first dimensional 

discrimination was most sensitive to simulation conditions and linking methods while bias of

14



difficulty was least sensitive. In general, the results of the repeated measures ANOVA showed 

that the soundness o f the linking results depended on test conditions and linking methods.

TABLE 4

Repeated Measures ANOVA (F values)

Source o f Variation Bias (aj) Bias(a2) Bias(d)
Between Factor 

Sample Size 
Group 

Dimensional 
Gro up * Structure

152.41**
82.91**

274.40**
16.11**

148.21**
87.83**

229.05**
15.67**

33.72**
2.16

15.35**
2.76

Within Factor 
Linking Method 
Link*Size 
Link*Group 
Llink*Structure 
Link*Group*Structu

653.21**
117.53**
25.41**
89.56**

7.32**

69.06**
127.42**
29.50**
84.65**

6.54**

329.44**
17.75**

1.31
7.24**

.71
LN RMSE (ai) LN RMSE (a2) LN RMSE(d)

Between Factor 
Sample Size 
Group
Dimensional 
Group* Structure

442.84**
153.42**

2.88
1.21

459.43**
180.64**

.47
1.04

327.62**
8.69**

.20**
3.30*

Within Factor 
Linking Method 
Link*Size 
Link*Group 
Llink*Structure 
Link*Group*Structu

226.53**
128.05**
75.23**
25.37**

4.12**

238.59**
156.70**
71.99**
35.59**

4.52**

1811.99**
32.03**

1.00
5.98**
5.07**

* p <.05, ** p<.C 1

To evaluate the behavior o f the two MIRT linking methods across simulation conditions, 

two summary statistics were plotted in Figures 2 through 7. Each data point of lines represents 

the average o f linking errors of 50 replications in terms of bias and RMSE. Note that, for 

example, APSS1 indicates the Group 1 with APSS items. In general, one can notice that the 

ODL method was less biased and more stable than the LL method for two discrimination



parameters and the LL method did better transformations for difficulty estimates than the ODL 

method. More detailed results follow:

1. There was inconsistency in Figures 2 and 3 that as the sample size increases, linking 

became more biased with the LL method. For the ODL method, however, larger 

samples reduced the linking bias consistently. Also, in the ODL method, biases are 

relatively small and stable across different sample sizes compared with the LL method.

2. Figure 4 shows that the difficulty estimates are over-transformed in the LL method, 

while under-transformed with the ODL method.

3. Figures 5 and 6 indicate that the ODL method showed larger RMSEs for two 

discrimination parameters than the LL method when the sample size was small. But as 

sample size increased, the ODL method generated more stable transformations than 

the LL method.

4. Figures 2, 3, 5 and 6 show that linking bias and RMSE of the LL method for 

discrimination parameters had relatively big differences between Group 1 and 2 

(whether or not dimensions are correlated).

5. Figure 7 shows that the transformed difficulty estimates of the LL method were more 

stable than those o f the ODL method.

In sum, the simulation study revealed that the accuracy (bias) and stability (RMSE) of 

linking depended much on the selection of linking method, sample size, examinee ability 

distribution, and dimensional structure. Even though there was some inconsistency in biases, 

especially for the LL method, as the number of examinees increased, metric transformations 

became less biased and more stable. Generally speaking, the ODL method did better

16



transformations for discrimination parameters and the LL method did better transformation for 

difficulty related parameters.

Real Data

As a real data example, two readiness test forms were analyzed. Because the test was 

developed to measure two distinguishable abilities (i.e., reading and mathematics), the two 

dimensional model was used to analyze the data. The lower asymptote parameter was ignored 

because traditional item difficulties of all the items were around .9 (about 90% of examinees get 

each item right). One form was treated as the base form and the other as the linked form. 

Originally there were 22 common items across test forms, but all examinees in the sample 

responded correctly to one of the reading items, so that item was removed. Item parameter 

estimates after a varimax rotation were used in order to clarify the dimensional structure. 

Estimates of 21 common items (11 items for reading and 10 for mathematics) are provided in 

Table 5.

After the linked form was transformed onto the base form scale by using the ODL 

method and the LL method, the two transformed values were compared with the item estimates 

of the base form. Differences between transformed estimates and base estimates are illustrated in 

Table 6. It shows that the ODL method transformed discrimination estimates of the linked form 

onto the base form more closely than the LL method did, and that the LL method worked better 

for difficulty estimates, which confirmed the simulation results.

17
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TABLE 5

Item Parameter Estimates of Two Readiness Test Forms

Base Test (n= 190) Linked Test (n=199)
Item ai 32 d ai a2 d

1 0.91 0.24 2.66 0.84 0.52 11.56
2 0.91 0.75 3.32 0.73 0.48 3.98
3 2.38 2.44 7.22 0.76 0.28 3.20
4 1.01 -0.05 2.37 0.72 0.35 3.05
5 0.61 0.34 1.68 0.66 0.29 2.23

Reading 6 0.59 0.81 1.77 0.41 0.41 1.43
7 0.42 0.67 1.59 0.63 0.25 1.58
8 0.69 0.44 1.48 0.66 0.28 1.80
9 1.73 0.52 2.64 0.60 0.22 1.41
10 0.90 0.60 1.73 0.61 0.52 1.85
11 0.87 0.36 1.03 0.49 0.28 1.04
12 1.03 1.35 3.19 0.13 0.80 2.20
13 1.30 0*93 2.67 0.20 0.88 3.42
14 1.14 2.02 3.97 0.34 0.92 6.72
15 0.67 1.00 2.40 0.49 0.52 2.10

Math ^ 0.63 1.26 2.32 0.23 0.88 3.15
0.43 1.21 1.28 0.27 0.77 1.76

18 0.81 0.94 1.74 0.51 0.48 1.51
19 0.86 0.40 0.99 0.11 0.58 0.63
20 0.56 0.83 1.39 0.42 0.61 1.33
21 0.77 2.13 1.61 0.22 0.69 0.71

Mean 0.91 0.91 2.34 0.48 0.52 2.70
SD 0.44 0.63 1.33 0.22 0.22 2.39

TABLE 6

Mean Differences Between Base Estimates and Transformed Values on the Readiness Test

ai a2 d
ODL method -.32 -.34 -.38
LL method -.45 -.48 -.20

When the two linking methods’ results were compared on the true score scale (test 

response surface), differences between the two sets of true scores (transformed score minus true 

base test score) were calculated for limited points (49 cells) o f a two-dimensional ability space (7



by 7). These difference scores, along with true score estimates of the base form, are presented in 

Figure 8, which shows that the two linking methods had different patterns of linking errors. For 

the ODL method, there were relatively moderate gaps between base test scores and transformed 

scores when examinees had lower or higher scores, cells o f the low left comer or center o f the 

first panel. However, the LL linking showed relatively large and moderate differences when 

students had lower test scores.

Summary and Discussion

The present study evaluated two MIRT linking methods based on the compensatory two- 

dimensional 2PL model and the common item design. The repeated measures ANOVA results 

showed that selection of linking method had a statistically significant impact on linking errors. 

When degrees o f the recovery o f parameters were quantified in terms o f bias and RMSE, the LL 

method worked better than ODL method for difficulty parameters, and the ODL worked better 

for two discrimination parameters. While the sample of 500 examinees showed unreliable 

results, mainly due to instability of estimates, but linking results with 1000 examinees showed 

somewhat acceptable outcomes compared with metric transformations with the recommended 

sample size, 2000, in MIRT.

In real data analysis of two readiness test forms with less than 200 examinees, again the 

LL method slightly outperformed the ODL method for difficulty parameters and the ODL 

method worked better for discrimination parameters. However, the comparison of test response 

surfaces (e.g., true score at 49 ability points) revealed different error regions for the two linking 

results even though the ODL method showed fewer differences on average. While the ODL 

method had moderate linking errors to both lower and higher scored examinees, the LL method 

generated large and moderate errors to low level students.
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Major statistical differences between the two linking methods could be found in linking 

components and optimization criteria. The ODL linking method consists of two components, the 

rotation matrix and the translation vector, while the LL method includes the central dilation 

constant in addition to the previous two components. In some sense, the rotation matrix of the 

ODL method might be considered as a composite o f the rotation matrix and the dilation 

constants of the LL method because it is supposed to alter the variance/covariance of the initial 

distribution. More distinguishable differences between the two methods are optimization 

procedures to estimate linking components. The ODL method is an expansion of the UIRT 

linking framework (Stocking & Lord, 1983) such as minimizing the differences between two true 

score surfaces. The LL method adopts traditional factor analysis techniques to obtain comparable 

scales such as the orthogonal Procrustes solutions that are supposed to minimize differences 

between two matrices through a composite transformation.

Real data analysis showed that the two linking methods contained different amounts o f 

linking error on an ability dimension. As in the simulation study, the ODL method outperformed 

the LL method. The two methods showed different patterns in the true score error. For example, 

if any critical decision were made around lower test score for an examinee that takes the linked 

form of the readiness test, the ODL linking method would be more conservative than the LL 

method. On the other hand, for moderate or higher test scores, the two linking methods perform 

equally well or the LL method works better in some occasions. Thus, the selection of linking 

method depends on the purpose of the linking in that it would be a situational specific decision.

In general, a linking procedure requires individual judgements that are made by the 

individuals who are doing the linking. The judgment should be informed by practical testing 

issues and statistical characteristics of linking techniques. MIRT and linking of multidimensional

20



test scales are relatively new, uncertain areas compared with a huge volume of research on U1RT 

linking. Further research is needed on various issues to make MIRT linking more applicable, 

such as evaluation criteria, small sample size, the number o f common items and non-normal 

ability distributions.
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N ote: A ll angles are defined from  the d im ension 1.
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FIGURE I. Two Dimensional Structures for Simulation Data

D im en sio n  2 (8?)

Item s 11 to  20 (75°~90°)

Item s 1 to  10 ( 0 ° ~ 1 5 ° ) -

Dimension 1 (8i)

(a) Approximate Simple Structure

Dimension 2 (8?)

Item s 16 to  20 (75°~90°)

Item s 11 to  15 (50°~65°)

Items 6 to 10 (25°~40°)

Item s 1 to  5 (0°~15°)

Dimension 1 (0i)

(b) Mixed Structure
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FIGURE 2. Bias for the First Dimension Discrimination (ai)
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FIGURE 3. Bias for the Second Dimension Discrimination (a2)
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FIGURE 4. Bias for the Difficulty (d)
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FIGURE 5. RMSE for the First Dimension Discrimination (ai)
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FIGURE 6. RMSE for the Second Dimension Discrimination (a2)
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FIGURE 7. RMSE for the Difficulty (d)
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FIGURE 8. Differences o f True Scores on the Base and the Transformed Scales
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(c) True score distribution on the base test
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