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Abstract 

Multistage adaptive tests (MSTs) have gained increasing popularity in recent years.  MST 

is a balanced compromise between linear test forms (i.e., paper-and-pencil testing and computer-

based testing) and traditional item-level computer-adaptive testing (CAT).  It combines the 

advantages of both.  On one hand, MST is adaptive (and therefore more efficient than linear 

tests).  On the other hand, unlike CAT, it allows test developers to review test forms before 

administration, and it allows examinees to review and revise answers.  Despite the advantages of 

MST, there is little literature on the details of heuristic automated assembly of MST and on the 

investigation of MST in the context of classification tests. 

In this study, we designed a MST for a large-scale classification test and performed the 

automated test assembly using a heuristic method.  We then compared the performance of the 

MST with that of a linear test form and a CAT using computer simulation.  The automated test 

assembly was successful.  In comparing MST and CAT, we did observe a trade-off in 

measurement accuracy and item bank usage.  For classification purposes, however, MST 

provided classification accuracy as good as that from CAT, with more efficient item bank usage. 
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Multistage Adaptive Testing for a Large-Scale Classification Test: Design, Heuristic 
Assembly, and Comparison with Other Testing Modes 

Multistage adaptive tests (MSTs) have gained increasing popularity in recent years as the 

Certified Public Accountants (CPA) Examination successfully switched from the paper-and-

pencil (P&P) mode to the MST mode in 2004 (Breithaupt & Hare, 2007; Luecht, Brumfield, & 

Breithaupt, 2006) and the Graduate Record Examination (GRE) replaced the P&P linear testing 

mode and the computerized-adaptive testing (CAT) mode with MST in August, 20111.  CAT has 

been applied for decades, while MST was recently promoted as an alternative — a “balanced 

compromise” (Hendrickson, 2007) between the linear testing modes (i.e., P&P and computer-

based testing, CBT) and CAT. 

As the MST framework develops, it has taken several forms and names (Hendrickson, 

2007), including two-stage testing (Adema, 1990; Kim & Plake, 1993), computerized mastery 

testing (CMT; Lewis & Sheehan, 1990), computer-adaptive sequential testing (CAST; Luecht, 

2000; Luecht & Nungester, 1998), bundled multistage adaptive testing (BMAT; Luecht, 2003), 

and multiple form structures (MFS; Armstrong, Jones, Koppel, & Pashley, 2004).  Recently, the 

names multistage testing, multistage adaptive testing, adaptive multistage testing, or computer 

adaptive multistage testing have been widely used in literature (e.g., Armstrong & Roussos, 

2005; Belov & Armstrong, 2008; Breithaupt & Hare, 2007; Chen, 2011; Hambleton & Xing, 

2006; Jodoin, Zenisky, & Hambleton, 2006; Keng, 2008; Luecht, Brumfield, & Breithaupt, 

2006; Luecht & Burgin, 2003; Patsula, 1999).  This study will use the name multistage adaptive 

testing (MST).  In addition to the name, researchers have used different sets of terminology to 

describe the framework of multistage adaptive testing. This study will use the framework and 

terminology adopted in Luecht and Nungester’s (1998) paper. 

                                                 
1 See http://www.ets.org/gre/revised_general/about/experience for more information. 



 

 

2

In the MST framework, a test is divided into several stages.  Having multiple stages gives 

the test a few chances to tailor itself for each examinee by selecting an item set that matches the 

examinee’s ability best for every stage after Stage 1 based on his/her responses to previous 

stages.  This is similar to item selection in CAT.  However, while CAT selects each item on-the-

fly, MST preassembles all tests before administration.  The basic structure of the assembled MST 

tests is termed “panel.”  A panel is comprised of several stages, and each stage contains several 

testlets (termed “modules”) representing different difficulty levels.  Usually in a MST 

administration, multiple parallel panels are assembled.  During administration, each examinee is 

randomly assigned a panel and starts from Stage 1 of that panel.  After completing the module in 

a given stage, the examinee is routed to the module at the most appropriate difficulty level in the 

next stage.  A complete route an examinee takes through the test is termed “pathway”, which 

contains one module from each stage.  A panel can have several different pathways. 

Being a “balanced compromise” (Hendrickson, 2007), MST combines the advantages of 

linear tests and CAT.  On one hand, compared to P&P, MST enjoys many advantages of being a 

computerized test, such as savings on printing and delivery, savings on scoring labor, being able 

to give real-time score reports and feedback, and supporting new multi-media and interactive 

item types, etc.  Furthermore, like CAT, MST adapts to each examinee’s ability, which is not the 

feature of a standard linear CBT.  To achieve the same measurement accuracy, MST needs fewer 

items and shorter testing time than CBT.  The adaptive nature of MST is desirable for reducing 

item exposure and examinees’ testing time. 

On the other hand, MST also has several advantages over CAT.  First, because the item 

selection algorithm only takes place between stages but not within each stage, MST allows 

examinees to navigate back and forth through the items within their current stage to review the 
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questions and potentially change their answers.  Unlike CAT, where reviewing and changing 

answers is usually not allowed in order to prevent examinees from manipulating the item 

selection algorithm, MST is more natural and friendly to examinees, so that they may feel less 

stress and anxiety during the test. 

Second, MST also allows test developers to monitor and control the quality of the 

assembled tests (i.e., panels in MST).  Because the panels are assembled before administration, 

test development experts can review them regarding various aspects, such as content balance, 

answer key balance, word counts, and so on, in addition to the statistical properties.  As pointed 

out by Luecht and Nungester (1998), although a CAT item bank can be reviewed for quality, the 

individual test forms assembled from the item bank cannot.  Maintaining a trust in the quality of 

the mass-produced forms by both test developers and test users needs to be recognized as an 

essential part of implementing a computerized testing program.  By assembling tests before 

administration, MST could offer more assurance of test quality than CAT. 

The downside of MST, compared with CAT, is that MST is less efficient and less flexible 

for early termination than CAT.  Because CAT is adaptive on more frequent intervals, it is 

expected to be more efficient than MST.  Also, based on different termination strategies, CAT 

can terminate at any point as long as enough confidence in measurement accuracy is obtained 

and the content requirements are met.  Conversely, MST is module-based, and thus it could only 

terminate after a whole stage is completed.  However, if the loss in measurement efficiency and 

flexibility of early termination is within a tolerated range, MST may still be preferred over CAT, 

because it “strikes a balance among adaptability, practicality, measurement accuracy, and control 

over test forms” (Zenisky, Hambleton, & Luecht, 2010, p. 369).  
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A few studies have compared the measurement accuracy of MST and CAT (Armstrong et 

al., 2004; Keng, 2008; Kim & Plake, 1993; Patsula, 1999).  They all concluded that CAT is more 

accurate and efficient than MST.  Among them, two studies (Armstrong et al., 2004; Patsula, 

1999) compared MST with linear tests as well, and both concluded that MST is more efficient 

than linear tests.  In addition, Keng (2008) compared MST with an innovative CAT that is 

adaptive at the testlet level.  The results of the study indicate that, compared to the testlet-level 

CAT, MST has higher measurement accuracy but less efficient item pool utilization.  Although 

the findings of previous studies are generally consistent, they were conducted in the context of 

tests that report continuous proficiency scores; no such comparison studies have been conducted 

in the context of classification tests.  A classification test may be a pass/fail certification exam or 

one that classifies examinees into three or more proficiency categories.  Because the purposes 

differ between classification tests and those that report continuous scores, the test designs, 

especially the choice of items, also differ, which may then make the measurement accuracy and 

item bank usage different.  Therefore, a comparison study in the context of classification tests is 

needed.  The first purpose of the study is to examine the measurement accuracy of ability 

estimates, classification accuracy, and item bank usage of MST, CAT, and linear tests for a 

large-scale classification test through simulation.  

The second purpose of this paper is to compare different designs of MST.  As Zenisky et 

al. (2010) described, the test design of MST is highly complex and variable.  To develop a MST 

in an operational setting, test developers need to carefully make many decisions based on 

practical requirements, such as the number of stages, number of difficulty levels per stage, 

number of items per stage, and routing rules.  This study compared the performance of the MST 

tests assembled under different test designs. 
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The last purpose of this study is to investigate the feasibility of a heuristic “top-down” 

(Luecht & Nungester, 1998) assembly method for MST.  Although MST can be assembled using 

linear test assembly methods, the assembly of MST is more complex than the assembly of linear 

forms, especially when multiple parallel panels need to be assembled.  In MST, modules and/or 

pathways are treated as the assembling unit.  Luecht and Nungester (1998) mentioned two cases: 

the bottom-up assembly and the top-down assembly.  In the bottom-up assembly, parallel forms 

for each module are first assembled and then mixed-and-matched to build parallel panels.  In the 

top-down strategy, the assembled forms for each module are not completely parallel, and one 

more optimization procedure, in addition to that used to assemble modules, is needed to produce 

parallel panels in which the pathways satisfy specific constraints.  The current applications of 

MST mostly use the bottom-up assembly, but there has been little exploration on the top-down 

assembly.  Therefore, the demonstration of the top-down assembly in this study may provide 

some additional information for practitioners and researchers. 

There are generally two classes of test assembly techniques for MST: linear 

programming methods and heuristic methods.  A comprehensive description of linear 

programming methods is provided in van der Linden (2005).  MST studies that used linear 

programming assembly methods include Adema (1990), Armstrong et al. (2004), Armstrong and 

Roussos (2005), Breithaupt and Hare (2007), and Luecht et al. (2006).  In heuristic test assembly 

methods, the following three are well-known: the weighted deviation model (WDM; Swanson & 

Stocking, 1993), the normalized weighted absolute deviation heuristic (NWADH; Luecht, 1998), 

and the maximum priority index (MPI; Cheng & Chang, 2009).  Among them, only the NWADH 

has been used in the MST assembly studies.  MST studies that used the NWADH assembly 

method include Luecht and Nungester (1998), Patsula (1999), Luecht (2000), Hambleton and 
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Xing (2006), and Jodoin et al. (2006).  Linear programming methods provide an optimal solution 

for assembling multiple parallel panels that strictly satisfy all test assembly constraints (e.g., 

content coverage, item exposure); however, when the number of constraints becomes large, the 

procedure can be cumbersome, time-consuming, or even become infeasible.  Moreover, when 

multiple parallel forms are needed, the number of constraints can increase in proportion to the 

number of parallel panels (see van der Linden, 2005).  

Unlike linear programming, heuristic methods do not guarantee that all of the constraints 

will be met, but they are less computationally intense, and can always provide a solution.  

Moreover, heuristic methods do not need specialized commercial software, such as CPLEX2, to 

solve large test assembly problems.  Therefore, this study chose to use a heuristic method due to 

its simplicity and feasibility.  The test assembly and simulation study were completed by 

computer programs written in MATLAB R2011a (The MathWorks Inc., 2011) and R (R 

Development Core Team, 2011).  The following sections will introduce the designs and 

methodology of the study in detail. 

Methods 

Item Pool 

The MST panels were assembled from a real item bank containing 600 multiple-choice 

items.  The item response theory (IRT) framework was used in the analyses of the tests, and the 

items were calibrated using the three-parameter logistic model (3PLM).  The means and 

standard deviations (SD) of the a-, b-, and c-parameters are shown in Table 1.  

  

                                                 
2  See http://www-01.ibm.com/software/websphere/ilog/ for more information. 



 

 

7

Table 1 

Descriptive Statistics of the Item Parameters of the Item Pool 

 Item parameter 
  a b c
Mean 1.196 0.060 0.153
SD 0.329 1.430 0.072
 

The items cover eight content categories, and the number of items in each content 

category is shown in Table 2.  The difficulty of the items is associated with their content 

category.  Items from categories 1 and 2 were relatively easy, while those from categories 5, 7, 

and 8 were relatively difficult.  The remaining categories had medium levels of difficulty. 

Table 2 

Number of Items in Each Content Category in the Item Pool 

Content category 1 2 3 4 5 6 7 8 
Number of items 180 17 80 34 45 84 53 107

 

MST Models 

The total test length was fixed at 21 items, while the number of stages, number of 

modules in each stage, and number of items in each stage were altered as experimental 

conditions. 

In terms of the number of stages within a panel, this study included a four-stage model 

(i.e., the 1-2-3-4 model as illustrated by Figure 1; “1-2-3-4” means there are one module in the 

first stage, two modules in the second stage, three modules in the third stage, and four modules in 

the last stage) and a three-stage model (i.e., the 1-2-4 model as illustrated by Figure 2).  In both 

models, the number of levels for the last stage was chosen to be four to aid the classification of 

examinees into five categories. The four classification cut-points on the θ scale were set to -1.39,  
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-0.47, 0.28, and 1.18.  By setting four levels for the last stage, the difficulty of the last four 

modules can be naturally anchored at the four cut-points.  

 

 

Figure 1. The 1-2-3-4 MST model. The numbers in the module names indicate the stage and the 
letters indicate the relative difficulty of the modules in each stage (H: high; M: medium; L: low; 
HH: higher than H; LL: lower than L). 
 
 

 

 

Figure 2. The 1-2-4 MST model. The numbers in the module names indicate the stage and the 
letters indicate the relative difficulty of the modules in each stage (H: high; M: medium; L: low; 
HH: higher than H; LL: lower than L). 
 

MST can allocate different numbers of items (i.e., module length) for different stages 

given the total test length (21 items in this study).  It can have equal-length stages, longer earlier 

stages, longer middle stages, or longer later stages.  As pointed out by Patsula (1999), both the 

strategy of longer earlier stages and that of longer later stages have their own rationales.  The 
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design with longer earlier stages is intended to provide higher precision for routing the examinee 

to subsequent stages.  The design with longer later stages is intended to administer more items 

when the test becomes more closely aligned with the examinee’s ability level.  Both designs gain 

some accuracy from one side and lose some accuracy from the other side.  In this study, all four 

allocation strategies were implemented.  The eight conditions of the two models are listed in 

Table 3.  Because each examinee takes only one module per stage, the modules in the same stage 

contain the same number of items. 

Table 3 

Number of Items in Each Stage 

  1-2-3-4 model
 Stage 1 Stage 2 Stage 3 Stage 4
Model condition A 6 5 5 5
Model condition B 7 6 4 4
Model condition C 4 6 6 5
Model condition D 4 4 6 7 
     
 1-2-4 model  
 Stage 1 Stage 2 Stage 3  
Model condition E 7 7 7  
Model condition F 9 6 6  
Model condition G 6 9 6  
Model condition H 6 6 9  

 

Panel Assembly 

Panel assembly was completed in two steps: (1) assembling modules from the item bank 

and (2) assembling panels from the obtained modules.  The following sub-sections describe 

several important aspects of the assembly method. 

Number of forms for each module and number of parallel panels.  The first step is 

assembling modules using the items from the item pool, and the number of forms to be 

assembled for each module needs to be determined.  In this study, to make the expected exposure 
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rates of different modules more uniform (i.e., more efficient use of the item bank), the number of 

forms to be assembled for each module was determined to be inversely proportional to the 

number of modules of the stage the module belongs to (it was assumed that the proportions of 

examinees routed to different modules were roughly equal).  Based on the properties of the given 

item bank, for the 1-2-4 models, 10 forms for the 1M were assembled; five for each of 2H and 

2L; and three for each of 3HH, 3H, 3L, and 3LL.  For the 1-2-3-4 models, 10 forms for 1M were 

assembled; five for each of 2H and 2L; four for each of 3H, 3M, and 3L; and three for each of 

4HH, 4H, 4L, and 4LL.  The second step is assembling panels from modules.  Because the 

content constraint is a test level constraint (explained in detail in a subsequent subsection), many 

of the mixed-and-matched panels will not have a satisfactory content coverage.  Therefore, the 

panels cannot be assembled by simply mixing-and-matching the forms of the modules; instead, 

an optimization algorithm similar to that in the module assembly step needs to be applied to 

monitor the quality of the assembled panels (i.e., the top-down assembly).  For illustration 

purposes, this study assembled 10 parallel panels, but in practice, many more parallel panels can 

be assembled. 

Module difficulty anchors and test information function (TIF) targets.  Each module 

had a difficulty anchor on the θ scale.  The main goal of the module assembly step was to 

optimize the module information at the corresponding θ anchors (module information is 

computed by summing up the Fisher information of all items in the module).  The θ anchors for 

the four levels in the last stage were set at the four classification cut-points.  By selecting items 

to optimize the module information at the corresponding anchors, the four final modules will 

have the best discriminating power around the classification boundaries.  In this way, the 

classification accuracy of the MST can be improved.  The θ anchors for each module in the 
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preceding stages were computed by taking the average of the θ anchor values of their own sub-

routes.  

Because the TIFs of the assembled tests are directly related to measurement accuracy, to 

make the comparison fairer, the TIF targets for MST are set up in two ways: (1) in the 

comparison with a linear test form, the targets used in MST module assembly were computed 

from the linear form.  Specifically, the linear form was composed of items corresponding to the 

four difficulty levels in the final stage of MST.  Therefore, the targets for the average item 

information in each final stage module were computed by averaging the information of items in 

the linear form designed for each corresponding difficulty level.  The targets for the modules in 

the preceding stages were computed by averaging the targets of their sub-routes.  (2) Because 

CAT makes its optimized item selection from the item pool, the targets for MST assembly in the 

comparison with CAT were also optimized for the same item pool.  The method for computing 

optimized TIF targets was described by Luecht (2003).  Briefly speaking, the targets were 

obtained by averaging the test information values over the best several tests sequentially 

assembled through the maximum information method. 

In the panel assembly step, each pathway had a set of TIF targets.  The anchors of these 

targets were the θ anchors of the particular modules the pathway contained.  The pathway TIF is 

the summation of the item information functions of all of the items in the pathway. In this step, 

Luecht’s (2003) method was used as well to compute TIF targets for each pathway. 

Content coverage constraint.  The content coverage constraint for panels is that all 

pathways should have at least one item from each of the eight content categories.  However, this 

content constraint is a top-down constraint.  It needs to be broken down to the module level for 

the module assembly step.  The specific broken down constraint, however, is more complex than 
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the “bottom-up” constraints.  Instead of setting constraints for each individual module, a general 

constraint was set for the overall coverage of all assembled forms for each module.  In the case 

of four stages with an equal number of items in each stage, if a category should be covered in the 

whole test at least n times, then it is expected to be covered at least n / 4 times for each stage.  

For the case of unequal module sizes in different stages, the expected chance of appearance is in 

proportion to module sizes.  The specific lower bound for each module is further computed in 

proportion to the number of forms to be assembled, respectively. 

Item overlap.  The use of the items in the item bank also needs to be considered.  An 

upper bound was set up for the number of different modules that an item is allowed to appear in.  

Two item overlap conditions were implemented: (a) no overlap, allowing an item to appear in 

only one module at maximum, and (b) with overlap, allowing an item to appear in two different 

modules at maximum.  It is expected that modules assembled under the with-overlap condition 

tend to satisfy the target TIF and content constraints more fully than modules assembled under 

the no-overlap condition. 

The heuristic assembly algorithm.  In both the module assembly and panel assembly 

steps, a simplified version of the normalized weighted absolute deviation heuristic (NWADH; 

Luecht, 1998) was used.  

In the module assembly step, let: 

i = 1, 2, …, I denote one of the I items in the item bank,  

j = 1, 2, …, J  denote one of the J items needed to be selected into a module, and 

n = 1, 2, …, N  denote one of the N constraints. In the module assembly step, 

there are ten constraints: the TIF value at the θ anchor of the module, the item difficulty target 

for the module, and eight content constraints on the eight content categories.  Each constraint has 
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a target Tn and a weight Wn preset to particular constants.  In this study, the targets can be 

different for each module and the weights were obtained through a few adjusting trials.   

The assembly of a module containing J items is performed by repeating the following 

process for j = 1, 2, …, J:  For the jth item, select an item that maximizes, ∑ ∑ ܹ݁,ݔேୀଵூୀଵ  , (1) 

subject to the constraints, ݔ ∈ ሼ0, 1ሽ for i = 1, 2, …, I, (2) ∑ ݔ ൌ ݆ூୀଵ భݔ (3) ,  ൌ మݔ ൌ ⋯ ൌ ೕషభݔ ൌ 1 , (4) 

where xi represents the decision variable for selecting the ith item into the module and ei,n , which 

can be regarded as the “priority index” of item i on constraint n, is defined by the following 

equation, 

݁, ൌ ൝1 െ ௗ,∑ ௗ,∈ೃೕషభ 	,			݂݅	 ∑ ݀,∈ோೕషభ ് ݁ݏ݅ݓݎ݄݁ݐ																,00   (5) 

where ܴିଵ is the subset of item bank excluding the selected ݆ െ 1 items, and ݀,	is an absolute 

deviation as defined in the following paragraph. When none of the available items deviate from 

the target for the constraint n, namely ∑ ݀,∈ோೕషభ ൌ 0, the division is undefined. In this case, the 

priority indices ݁, for all available items on constraint n are set to the same value, and 0 is used 

here due to its simplicity. 

In the module assembly step, di,n is computed for the TIF value at the corresponding θ 

anchor, the item difficulty value, and each of the eight content categories.  Let ui,n denote the 

attribute associated with constraint n of item i.  For the constraint on module information at the 

corresponding θ anchor(s), n = 1 and 
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݀,ଵ ൌ ฬ భ்ି∑ ௨ೖ,భ௫ೖೖసభିାଵ െ ,ଵฬݑ ,			݅ ∈ 	 ܴିଵ, (6) 

where ଵܶ is the target value of the constraint on module information.  For the constraint on item 

difficulty, n = 2 and ݀,ଶ ൌ ห ଶܶ െ ݅			,,ଶหݑ ∈ 	 ܴିଵ, (7) 

where ଶܶ is the target item difficulty for that particular module. For the constraints on the content 

categories, n = 3, 4, …, 10 and 

݀, ൌ ൝ ்ି∑ ௨ೖ,௫ೖೖసభିାଵ െ 	݂݅			,,ݑ ்ି∑ ௨ೖ,௫ೖೖసభିାଵ  ݁ݏ݅ݓݎ݄݁ݐ																,,0ݑ 	,			݅ ∈ 	 ܴିଵ	, (8) 

where ܶ is the lower bound for number of items that belong to each content category required 

for the module, as explained previously in the section “Content coverage constraint”. 

In the panel assembly step, the modules assembled in the module assembly step form a 

“module pool”; panels are assembled using the module pool and the same heuristic algorithm. 

The targets and constraints are set for each pathway in the panel. The TIF target becomes four 

TIF values at the ߠ  anchors of the four modules that each pathway contains. There is no 

constraint on item difficulty in the panel assembly step, and the content constraints become that 

all pathways must have at least one item from each content category.  

Assembly priority.  The heuristic method is greedy, which means the modules/panels 

assembled earlier tend to have better-suited items/modules, and thus, the assembly priority is 

considered to have a non-ignorable impact on the performance of MSTs.  To investigate the 

impact, two assembly priority conditions were compared: (a) backward assembly, namely, the 

assembly starts from Stage 4 and ends in Stage 1, and (b) forward assembly, namely the 

assembly starts from Stage 1 and ends in Stage 4. 
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Moreover, within a stage, a spiral design was used in the module assembly step to give 

each difficulty level an overall equal priority to select items.  In the panel assembly step, a 

randomization procedure was utilized to give each panel an overall equal priority to select 

modules.  

Routing Rules 

There are two major routing rules for MST: the defined population interval (DPI; 

Hambleton & Xing, 2006; Jodoin et al., 2006) method and the approximate maximum 

information (AMI; Leucht, Brumfield, & Breithaupt, 2006) method.  This study used the AMI 

method.  This method uses the intersection point of the module information curves of the two 

adjacent difficulty levels as the routing cutoff point (Breithaupt & Hare, 2007).  It is analogous to 

the maximum information item selection method in CAT.  Above the cutoff θ, the module at the 

higher difficulty level provides more information, and below the cutoff θ, the module at lower 

difficulty level provides more information.  Although the panels are intended to be parallel, the 

actual module information curves still vary across panels, and thus the AMI cutoff θ values are 

computed individually for each panel. 

After deciding the cutoff points, either true-score routing (TS) or theta routing can be 

implemented.  The θ routing strategy obtains a provisional θ estimate for the examinees after 

each stage and routes the examinees by comparing their θ estimates with the cutoff θ values.  

The true-score routing first computes the true scores for cutoff θ values, and then compares the 

examinee’s total-correct scores with the cutoff true scores.  Luecht, et al. (2006) claimed that the 

simpler true-score routing is sufficient for the routing purpose.  This study implemented both the 

true-score routing and θ routing strategies to verify their statement.  



 

 

16

In summary, the factors in the MST design included: (a) number of stages (three or four), 

(b) module length assignment (four patterns), (c) overlap (allowing an item to appear in one or 

two different modules at maximum), (d) routing strategy (true-score routing or θ routing), and (e) 

assembly priority among stages (forward assembly or backward assembly). 

After the panels are assembled and the cutoff scores are computed, the panels should go 

to expert review. After approved changes are made, the panels are approved for test 

administration.  This simulation study assumes that all of the assembled panels were approved 

for administration. 

Simulation Study  

The examinee true θs were simulated from the N(0, 1) distribution truncated within (-3.5, 

3.5).  The reason for truncation is to prevent an unnecessary confounding effect brought by 

outliers.  The sample size was 5000.  To increase comparability, the same set of true θs was used 

across all conditions.  Responses to each item were simulated by a Monte Carlo experiment.  

Each examinee was randomly assigned a panel, and the program routed the examinee between 

stages according to the routing rules.  After the whole test was completed, a maximum likelihood 

estimate (MLE) of ability was given to the examinee, and the examinee was classified into one 

of the five classification categories based on the range where the final θ estimate fell in. 

Different conditions of MST were compared through the simulation study.  The MSTs 

were also compared with a representative linear test form comprised of 30 items and a CAT with 

a fixed length of 21 items, the same as the MSTs.  The CAT had the same content constraints as 

the MST as well.  The item selection procedure in CAT incorporated the traditional maximum 

information method, which is the most commonly-used item selection method in CAT.  To 
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control item exposure, the administered item was randomly drawn from the 15 most informative 

items. 

The evaluation criteria included several aspects. The first aspect was measurement 

accuracy.  Both the accuracy of θ estimation and classification were evaluated.  For θ estimation, 

the root mean square error (RMSE) of the θ estimates and the Pearson correlation coefficient 

between the true θs and θ estimates were computed.  For classification accuracy, the correct 

classification rate was computed by dividing the number of examinees correctly classified by the 

total number of examinees.  

The evaluation of the comparison between MST and CAT also included the evaluation of 

item bank usage.  The indices included (a) the number of items in the active pool, namely, the 

number of items selected into the parallel panels; (b) the number of unused items; (c) the 

maximum, mean, and standard deviation of the item exposure rate; and (d) the average test 

overlap rate and average conditional test overlap rates for three subgroups of examinees grouped 

based on their ability levels.  Specifically, the item exposure rate for an item was computed by 

dividing the number of times the item is administered by the number of examinees; the average 

test overlap rate was computed as the average of the proportion of overlapping items 

administered to any possible pair of examinees (Way, 1998). 

Results 

In each experimental condition, the proportion of content categories that did not meet the 

constraint (i.e., one item from each of the eight content categories) was computed and averaged 

over all pathways and all panels.  The maximum average proportion of unsatisfied content 

constraint for a condition was 0.130, and the average over all conditions was 0.088.  Although it 

is possible to make all pathways strictly meet the content category constraint by adjusting the 
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weights in the heuristic assembly algorithm, this may harm the parallelism of the test information 

curves across the panels.  In this study, the unsatisfied proportion was considered acceptable and 

no further adjustment of the weights was performed.  If the violation is not severe, it is also 

possible to manually replace items to satisfy the content category constraint. 

Test information can also be monitored for all modules and pathways in the assembled 

panels by plotting the module/pathway information curves.  Figure 3 (see page 19) shows an 

example of the module information function curves in each stage of an assembled panel.  The 

curves hit the targets and spread over the difficulty range. 

Figure 4 (see page 20) is an example of the pathway information curves of the 10 parallel 

panels.  The ten parallel panels produced almost identical information curves for all eight 

pathways, which means that the panels are highly parallel in terms of test information.  

Moreover, the information curves peak at different locations along the θ scale, which adequately 

reflects the different targeted ability levels of the subgroups of population designed to take each 

pathway. 
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Figure 3. Module information function curves in one of the 1-2-3-4 panels (the best condition of 
linear-target no-overlap MST: 7-6-4-4, backward assembly, Panel 4). The red circles indicate the 
module information targets at corresponding θ anchors. 
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Each subplot in Figure 4 is a different pathway in the model; different curves in a subplot 

represent the same pathway in different parallel panels (Pathway 1: 1M-2H-3H-4HH; Pathway 2: 

1M-2H-3H-4H; Pathway 3: 1M-2H-3M-4H; Pathway 4: 1M-2H-3M-4L; Pathway 5: 1M-2L-

3M-4H; Pathway 6: 1M-2L-3M-4L; Pathway 7: 1M-2L-3L-4L; Pathway 8: 1M-2L-3L-4LL). 

Comparison Among Different MST Designs 

Different conditions of MST were compared in terms of correct classification rates 

(CCR).  Figure 5 (see page 22) presents the CCR for all of the MST conditions.  In the plots, the 

first two model conditions are the same; the reason for replicating the first model condition is to 

provide a baseline of random variation.  

The difference between the conditions of the upper two subplots and bottom two subplots 

is that they have different information targets in the assembly procedure.  The targets used by the 

MSTs in the upper two subplots were computed from the representative linear form, as described 

in the Methods section.  The targets used by the conditions in the bottom two were optimized 

from the given item bank.  Because the targets optimized from the item bank were higher than 

those based on the linear form, the classification accuracies of the conditions with the bank-

optimized targets were higher than those with linear form targets. 
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The three-stage models appear to the right of the vertical lines in the plots, and the four-

stage models appear to the left of the vertical lines.   Only in the bank-optimized and with-

overlap conditions, the four-stage models provided slightly higher CCR than the three-stage 

models. No consistent advantage of the four-stage models was observed in other subplots.  This 

is expected, because the four-stage models are theoretically more adaptive and thus more 

efficient; however, in the MST assembly, having more stages brings in greater complexity, 

which may decrease the overall quality of the assembled tests.  This also confirms previous 

researchers’ claim (Jodoin et al., 2006) that including more stages does not necessarily 

significantly increase measurement precision. 

It is not clear whether a longer routing stage, longer middle stages, or longer later stages 

is better.  This result again confirms previous research findings (Chen, 2011; Patsula, 1999). 

Comparing the no-overlap conditions and the with-overlap conditions, for the bank-

optimized-target conditions, the with-overlap conditions provided higher CCR than the no-

overlap conditions, because by allowing some overlap, the panels were allowed to have more 

informative items.  Therefore the optimized targets are higher, and thus the assembled panels are 

more informative.  But for the linear-form-target conditions, the targets are fixed, so there is not 

much difference between no-overlap and with-overlap.  For operational use, the targets should be 

fixed.  Therefore, there will not be much difference in CCR between no-overlap and with-

overlap; rather, the difference is in the item bank usage.  To assemble the same number of 

parallel panels, the no-overlap conditions use more items and have lower item exposure rates 

than the with-overlap conditions. 
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There were no consistent differences between true-score routing and θ routing.  This 

result confirms Luecht et al.’s (2006) claim that the simpler true-score routing algorithm 

performs as well as the more complicated θ routing. 

With respect to forward assembly versus backward assembly, there was a trend, 

especially in the bank-optimized conditions, that the backward assembly method produced 

higher classification accuracy.  The backward method assembles the most complicated stage 

(i.e., the stage with the most difficulty levels) first, which offers more available items to build the 

complex structure; while the forward method assembles the simplest stage first, leaving fewer 

available items for the stages with more complex structures.  Therefore, the backward method 

can assemble panels with more neatly spread module information curves, leading to higher 

classification accuracy. 

Comparison Between the MSTs and a Linear Test Form 

We also compared the MSTs with a representative operational linear form.  The linear 

form had 30 items.  Table 4 shows the comparison results.  In the table, the best and worst MST 

conditions were chosen based on CCR from all the MST conditions for either the no-overlap 

group or with-overlap group. 
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Table 4 

Comparison Between the MSTs (Linear Form Target) and a Linear Form 

 Best MST 
conditions  Worst MST 

conditions Linear 
form  No 

overlap
With 

overlap  No 
overlap

With 
overlap 

Correct classification rate 0.745 0.733 0.722 0.713 0.703
RMSE 0.401 0.412 0.374 0.419 0.364
Pearson correlation 0.936 0.933 0.940 0.932 0.939
Test length 21 21 21 21 30 
 

Although the test length was 30% shorter than the linear test, all MST conditions 

provided a higher CCR than that of the linear form.  The linear test form had smaller RMSE and 

higher Pearson correlation coefficient than almost all of the MST conditions. Two possible 

reasons for this result may be (a) the test length of the linear form is longer, and (b) the MSTs 

were assembled to have higher test information around the classification boundaries than the 

linear test form. 

Comparison Between the MSTs and a CAT 

The MSTs were also compared with a fixed-length CAT.  The CAT had content 

balancing algorithms; specifically, in each test, at least one item should come from each of the 

eight content categories.  The first four items in the CAT were randomly selected.  In addition, in 

the item selection starting from the fifth item, 15 most informative items at the examinee’s 

provisional ability estimate were first selected, and then one of them was randomly drawn to be 

the next administered item.  Table 5 shows the comparison results.  
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Table 5 

Comparison Between the MSTs (Bank-Optimized Target) and a CAT 

  

Best MST conditions
CAT No 

overlap
With 

overlap
Correct classification rate 0.770 0.788 0.781 
RMSE 0.383 0.388 0.254 
Pearson correlation 0.941 0.945 0.969 
Test length 21 21 21 
Number of used items 224 131 530 
Item pool size 224 131 600 
Item exposure rate 

 
Max 0.129 0.245 0.256 
Mean 0.094 0.160 0.040 
SD 0.018 0.047 0.053 

Average 
conditional test 
overlap rate 

Low 0.122 0.233 0.165 
Medium 0.145 0.302 0.215 
High 0.156 0.307 0.162 

Average test overlap rate 0.097 0.174 0.111 

 The examinees are divided into three groups by ability level. Low: θ < -0.43; Medium: -0.43 ≤ θ < 0.43; High: θ 
≥ 0.43. 

 

With the same number of items, the CAT produced lower RMSE and higher Pearson 

correlation coefficient than the MSTs.  In terms of CCR, the CAT had higher CCR than all of the 

no-overlap MSTs, but some with-overlap MSTs had even higher CCR than the CAT (also seen 

in Figure 5).  The main reason is that the MST modules in the last stage were assembled to 

maximize the information at the classification bounds, while the CAT was designed to select 

items to maximize the information at the provisional ability estimate.  Although the MSTs may 

not estimate the exact trait values as accurately as the CAT, they may still provide accurate 

classification results. 

In the CAT, the whole item bank of 600 items was considered active.  On the contrary, in 

the MSTs, only those items selected into the ten parallel panels were considered active.  

Specifically, the best no-overlap MST had 224 items in its item pool, and the best with-overlap 
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MST had only 131 items in its pool.  In MST, all of the active items were exposed in 

administration, but in CAT, 70 out of 600 items were never exposed to examinees. 

The item exposure rates are not directly comparable because the item pool sizes are 

different.  However, the item exposure rates of MSTs were more uniform than the CAT, which is 

desirable.  Comparing the best no-overlap MST with the CAT, although the MST used only one 

third of the active items in the CAT, item exposure rates were more uniform and the average 

overall/conditional test overlap rates were lower.  The trade-off is in classification accuracy.  

Comparing the best with-overlap MST with the CAT, the MST used less than one fourth of the 

active items in the CAT, but had even higher classification accuracy and lower item exposure 

rate than the CAT.  The trade-off is the average test overlap rate for the with-overlap MST is 

higher than the CAT, which might indicate a higher risk for a test security breach. 

Conclusion and Discussion 

This study demonstrated automated top-down assembly of MST for a large-scale 

classification test by using a real item bank of 600 items and a revised version of the NWADH 

heuristic method.  It compared different MST designs, and it compared MST with CAT and a 

linear test form.  The results of the comparisons among different MST designs indicate that no 

consistent differences were found (a) between the four-stage models and three-stage models; (b) 

among different module-length assignments; and (c) between true-score routing and the more 

complicated θ routing.  There was a trade-off in item bank usage and measurement accuracy 

between allowing and not allowing items to appear in more than one module.   Finally, backward 

assembly was found to be superior to forward assembly. 

The study also compared MST with a linear test form and a CAT.  Compared with the 

linear test form, the MST both shortened the test from 30 items to 21 items and improved the 



 

 

28

classification accuracy.  Compared with the CAT, there was a trade-off between the 

classification accuracy and the item bank usage.  The no-overlap MSTs led to more efficient item 

bank usage than the CAT, but it had sub-optimal classification accuracy.  The with-overlap 

MSTs had the same level of classification accuracy as the CAT and lower item exposure rate, but 

higher average test overlap rate.  It should be noted that, however, the design of the CAT used in 

the simulation study is typical of that in practical applications (i.e., not classification-oriented 

CAT).  In the context of a classification test, some classification-oriented CAT designs are 

available (e.g., Eggen, 1999; Eggen & Straetmans, 2000; Thompson, 2011).  Since classification 

accuracy and item bank usage highly depend on the design (e.g., item selection method, stopping 

rule, exposure control strategy), the comparison between the performance of these classification-

oriented CAT designs and that of the MST design may be conducted in the future. 

Future studies can also explore other MST models.  For example, if an even shorter test is 

desired, modules can have fewer items, and panels can have fewer stages.  However, in general, 

two-stage models are not recommended due to policy concerns: examinees need a chance to 

recover if accidentally routed too low in the second stage (Zenisky et al., 2010). 

A variable-length MST is also possible.  For example, based on the 1-2-3-4 model, 

examinees who have correctly (or incorrectly) responded to all items in the first two stages may 

be routed to an extremely difficult (or easy) module (this means that two more levels are added 

to the third stage).  If these examinees still do very well (or poorly) in the third stage and it 

becomes obvious that they are in the highest (or lowest) classification category, the test will be 

terminated after the third stage (see, for example, Thompson, 2011, for more information about 

termination strategies).  Otherwise, the examinees will be routed to the final stage. This design 

may look like a 1-2-5-4 model. 
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To better control the quality of the assembled panels, one could initially assemble a 

sufficient number of panels and then apply a filter to discard the panels that fail to satisfy too 

many content constraints, have too small test information, or have TIFs that deviate too far from 

the targets. 

Also, more assembly constraints can be included in the Automated Test Assembly (ATA) 

program, such as the expected testing time.  The heuristic methods can deal with many 

constraints without dramatically increasing the computational time.  However, the weights for 

each constraint need to be adjusted carefully according to importance. 

Finally, the framework of MST may be more naturally applied to a test that includes 

passage-based (or testlet-based) items.  However, the IRT models used for the passage-based 

items may have significant effect on the assembly of modules and panels as well as the accuracy 

and efficiency of the test.  Comparing IRT models used for passage-based items (e.g., 

dichotomous model without considering the passage structure, polytomous model, and testlet 

model) in the context of MST and ATA may provide further information about the utility of the 

MST designs. 
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