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Abstract 

This paper investigates four methods of linear equating under the common item non-

equivalent groups design.  Three of the methods are well known: Tucker, Angoff-Levine, and 

Congeneric-Levine.  A fourth method is presented as a variant of the Congeneric-Levine method.  

Using simulation data generated from the three-parameter logistic IRT model we compare the 

accuracy of the four methods under a variety of conditions involving group differences between 

the old and new groups.  The sampling properties of the methods’ parameter estimates are also 

investigated.  The results indicate that the Tucker method is less accurate than the other three 

methods when group differences exist, especially when sample size is large (800).  However, the 

Tucker method’s gamma has the smallest sampling error, especially when sample size is small. 
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A Comparison of Four Linear Equating Methods for the 
Common-Item Nonequivalent Groups Design using Simulation Methods 

 
 Introduction 

 
In high stakes testing situations a new form is administered on each test date with 

examinees possibly varying in achievement over test dates.  This situation requires an equating 

method that can disentangle form differences (which form was easier/harder) from group 

differences (which group was higher/lower achieving).  The common-item nonequivalent groups 

(CINEG) design can be used to separate out form and group differences through the use of a 

small common item set, also called an anchor test (Kolen & Brennan, 2004).  Because the 

common items are given to both groups, the group difference on the common items is used to 

estimate the group difference between the two forms.  There are two variations of the CINEG 

design; the internal design where the common item set contributes to the examinee’s score and 

the external design where the common item set does not contribute to the examinee’s score.  

Some authors refer to CINEG design (internal or external) as the non-equivalent groups with 

anchor test (NEAT) design (internal or external). 

A difference between the CINEG design and the random groups equating design is that 

the former involves two groups possibly differing in achievement.  The concept of a synthetic 

population as described by Braun and Holland (1982) and Angoff (1971, 1982) is used to 

combine the two groups into one group for estimating the equating relationship.  The new group 

is given the weight iw  and the old group is given the weight 0w  where 0 1iw w  . Usually both 

weights are given the value 0.5; alternatively, the weights 1iw   and 0 0w   can be used so that 

the synthetic group is defined as just the new group.  The latter approach is used in this paper. 

Several observed score linear equating methods for the CINEG design have been 

developed: the Tucker method (Gulliksen, 1950, pp. 299-301), the Angoff-Levine method 
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described by Angoff (1982, 1984) which incorporates Angoff’s (1953) reliability formula, and 

the Congeneric-Levine method developed by Levine (1955) and further derived by Woodruff 

(1986).  A new fourth method presented in this paper is a variation of the Congeneric-Levine 

method.  The interested reader should also see Kane, Mroch, Suh, and Ripkey (2009a); Kane, 

Mroch, Suh, and Ripkey (2009b); Suh, Mroch, Kane, and Ripkey (2009); and Mroch, Suh, Kane, 

and Ripkey (2009), but note that what those papers refer to as the Levine observed score 

equating method is the Angoff-Levine method in this paper; they do not consider the 

Congeneric-Levine method.  The results in those papers generally agree with the result found in 

this paper, which is that the Tucker method ignores measurement error and as a consequence is 

inaccurate when group differences exist. 

Table 1 on the next page shows the layout and notation for the observed linear equating 

design used in this study. Note that m and   denote sample mean and population mean, 

respectively, and s and   are similarly defined for the standard deviation.  A tilde denotes that 

an indirect estimate is needed due to missing data.  The goal is to equate the new form e to the 

old form o, that is, to find a mapping of a score on the new form e to its comparable score on the 

old form o.  This represents the external design. The internal design equates (e + c) to (o + c), 

where c is the anchor test of common items.  This is done in the new group i using the indirect 

estimates ( )im o  and ( )is o  with the equation 

 
( ) ( )

( ) ( ) ( )
( ) ( )

i i
i i i i i

i i

s o s o
o e e m o m e

s e s e

   
     
   

 
   (1) 

where when 1iw   and 0 0w   

 0 0, 0( ) ( ) [ ( ) ( )]i M im o m o m c m c   , and (2)                    

 2 2 2 2
0 0, 0( ) ( ) [ ( ) ( )]i M is o s o s c s c   . (3)  
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These indirect estimates depend on the coefficients 0,M , which differ by method.  The first 

subscript 0 (zero) on   denotes that it is computed using old group statistics and the second 

subscript M denotes the method. 

Table 1.  

The Common Item Non-Equivalent Group Design Used in This Paper  

 Group 
 
 

Test 

 
Old Group 0 

(Test o Administered) 
 

 
New Group i 
(i=1, 2 ,3 ,4) 

Test e Administered 
 

 
 

New Test e 
(Score based on unique  
even-numbered items) 

 
NO DATA 

Indirect Estimates 
Not Needed When 

0 0w   

 

 
DATA 

Direct Values: 

Parameters: 2[ ( ), ( )]i ie e   

Statistics: 2[ ( ), ( )]i im e s e  

 
 
 

Old Test o 
(Score based on unique  
odd-numbered items) 

 
DATA 

Direct Values: 

Parameters: 2
0 0[ ( ), ( )]o o   

Statistics: 2
0 0[ ( ), ( )]m o s o  

 
NO DATA 

Indirect Estimates Needed: 

Parameters: 2[ ( ), ( )]i io o    

Statistics: 2[ ( ), ( )]i im o s o   

 
 
 

Anchor Test c 
 (Score on anchor test) 

 
DATA 

Direct Values: 

Parameters: 2
0 0[ ( ), ( )]c c   

Statistics: 2
0 0[ ( ), ( )]m c s c  

 

 
DATA 

Direct Values: 

Parameters: 2[ ( ), ( )]i ic c   

Statistics: 2[ ( ), ( )]i im c s c  

 
  

Let var denote variance, cov denote covariance, rel denote reliability, and 0 0( | )o c  

denote the slope of the linear regression of the unique items on the common items.  The formulas 

for the gammas for each method are: 
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 0 0
0, 0 0

0

cov( , )
( | )

var( )
T

o c
o c

c
   , (4) 

 
 
 

0 0 00 0 0
0,

0 0 0 0 0 0

cov( , ) var( )( | ) rel( )

rel( ) ( | ) cov( , ) var( )
AL

o c oo c o

c c o o c c





  


, (5) 

 
 

0 0 0 0
0, 1

0 0 0

cov( , ) ( | )

rel( ) var( ) rel( )
CL

o c o c

c c c

   , and (6) 

 
 0 0 0

0, 2

0 0 0 0

rel( ) var( ) rel( )

cov( , ) ( | )
CL

o o o

o c c o



   (7) 

where the method subscripts are as follows: T for Tucker, AL for Angoff-Levine, CL1 for the 

first Congeneric-Levine, and CL2 for the second Congeneric-Levine.  In this paper reliability is 

estimated by coefficient alpha although other coefficients could be used.  The formulas in 

equations (4) through (7) are for the external anchor situation, and they may be easily derived 

from the results given in Woodruff (1986).  As Woodruff (1986) shows the gammas for the 

internal anchor situation can be found by adding unity to the external gamma estimates.  For 

simplicity of notation and to illustrate their dependence on reliability, or lack thereof, all of the 

formulas given throughout are for the external anchor situation.  However, the results of the 

simulation study presented below are for the more common internal anchor situation. 

The rational for the development of the second Congeneric-Levine method is that the first 

Congeneric-Levine method depends on the reliability of the usually very short test composed of 

the common items.  The second Congeneric-Levine method reverses the regression and depends 

on the reliability of the usually much longer test composed of the unique items.  Reliability 

(coefficient alpha) estimates of long tests are usually more stable than reliability estimates of 

short tests because the distribution of coefficient alpha depends on both the number of items and 

the number of examinees (Feldt, Woodruff, & Salih, 1987).  It can be shown under a congeneric 
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model (Woodruff, 1986) that equations (6) and (7) are just different estimates for the same 

parameter.  Note that equations (5) and (6) are not equal. The right-most expression of equation 

(5) is only valid under the special assumption of a classically congeneric model (Woodruff, 

1986). 

The two Congeneric-Levine methods and the Angoff-Levine method explicitly depend on 

a reliability coefficient, although under the assumptions of the classically congeneric model 

(Kolen & Brennan, 2004; Woodruff(1986)), upon which the Angoff-Levine method depends, an 

estimate of the reliability of the common items (or unique items) can be found without resort to 

item scores (Woodruff, 1986).  The only method that does not consider reliability is the Tucker 

method.  In particular, the Tucker method uses a simple observed score linear regression slope 

parameter, whereas the other three methods use a slope parameter that is corrected for 

measurement error in the predictor (Buonaccorsi, 2010, p85).  As has been stated, when group 

differences exist in means or variances, the Tucker method give less weight to those differences, 

and so produces less accurate equating results. 

Establishing a Criterion for Comparison 

In the present study, a simulation method creates data for all six of the data cells in Table 

1 thereby enabling a comparison between indirect estimates and their corresponding direct 

values.  The total error for the mean and variance of the indirect estimates can be defined as the 

sum of two component errors: the first is the error due to the method and the second is the error 

due to sampling.  They are defined as follows when a sample is collected from a population: 

    ( ) ( ) ( ) ( ) ( ) ( )i i i i i im o o m o m o m o o        and (8) 

 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )i i i i i is o o s o s o s o o             .  (9) 
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When population data is available to compute the indirect estimates, error due to sampling is 

eliminated and error due to method equals the total error for the mean and variance for the 

indirect estimates.  They are defined as follows: 

 method_err( ) ( ) ( )i io o      and (10) 

 2 2 2method_err( ) ( ) ( )i io o     .  (11) 

The methods differ in their estimates for gamma which is the coefficient that steps-up the 

group differences on the common items to the scale of the total test.  To quantify this accuracy, 

the errors due to method, that is, the first term on the right sides of equations (8) and (9) and the 

formulas in equations (10) and (11)  will be evaluated and compared across the four equating 

methods.  However these raw values are not ideal for direct comparison for two reasons: first 

method error can be positive or negative and second method error is metric dependent.  To 

remedy these two problems the absolute value of the method error can be taken, and then the 

relative error of this quantity can be found producing an absolute relative error (A-RLTER) for 

the method.   For both the mean and variance indirect estimates A-RLTER due to the method are 

defined as follows for the population and sample data respectively:  

 
 ( ) ( )

) *1A-RLTER( 00
( )
i i

i

abs o o

o

 








 , (12) 

 

 

2 2

2

2

( ) ( )
)  *1A-RLTE 0R

( )
( 0

i i

i

abs o o

o

 




  


 , (13) 

 

 
 ( ) ( )

) *1A-RLTER 0( 0
( )
i i

i

abs m o m o
m

m o





 , and (14) 

 

 

2 2

2

2

( )
A-R

( )
) *10E

( )
LT R( 0

i i

i

abs s o s o
s

s o

  


 . (15) 
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 The present study is interested in assessing how accurately each of the four equating 

methods, Tucker, Angoff-Levine, Congeneric-Levine 1 and Congeneric-Levine 2 estimate the 

indirect estimates.  For population data mean and variance A-RLTERs, equations (12) and (13) 

will be computed and compared across the four equating methods.  For sample data, the average 

of the mean and variance A-RLTERs, equations (14) and (15), will be taken across replications 

and then compared across the four equating methods. 

Data Generation and Methodology 

The simulation data used in this study were based on the item parameters of 75 items 

from a nationally published English test and 60 items from a nationally published Mathematics 

test. All items were multiple choice items.  The three-parameter logistic (3PL) item response 

(IRT) model and a random sample of 10,000 examinees were used to estimate the item 

parameters for the two tests.  The BILOG-MG 3 (Zimowski, Muraki, Mislevy, & Bock, 2003) 

computer program was used for the estimation.  The mean and standard deviation (in 

parentheses) of the estimated IRT parameters for each test are shown in Table A-1 in Appendix 

A. 

Simulated Data 

Population data.  A random number generator was used to generate normally distributed 

theta (ability) values under four conditions: English with a small group differences (E1), English 

with large group differences (E2), Mathematics with small group differences (M1), and 

Mathematics with large group differences (M2).  Within a condition, a population dataset of 

400,000 examinee theta values (referred to as Old Group) and four additional population datasets 

of 400,000 examinee theta values each (referred to as New Groups 1 to 4 respectively) were 

created based on the manipulation of the new group in the following manner: no change in mean 
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and standard deviation, increase in mean and no change in standard deviation, no change in mean 

and an increase in standard deviation, and increase in mean and standard deviation.  Therefore 5 

datasets were created within each condition for a total of 20 total simulated examinee theta value 

datasets.  See Table A-2 in Appendix A for the exact values of the means and standard deviations 

for the 20 conditions.  Using the estimated item parameters and generated theta values for each 

of these 20 datasets, examinee dichotomously scored item responses were generated for each 

item using the 3PL model. In total, 8,000,000 examinee observations were generated.  

Sample data.  Random samples were drawn from each of the 20 simulated population 

datasets containing the examinee’s dichotomously scored item responses.  Sample sizes of 200, 

400 and 800 were drawn 2000 times.  The random sampling was done with replacement. 

Form Creation 

For each of the English datasets (population and sample) two forms each with a total of 

43 items (unique plus common) were created by using odd numbered items as the old form and 

even number items as the new form with the exception of item 75 which was included on both 

forms to obtain equal length forms.  To create a common item set, five additional items from 

each form were selected and crossed with the other form, for a total of 11 common items.  See 

Table A-3 in Appendix A for more details.  

Similarly for each of the Mathematics datasets (population and sample) old and new 

forms each with a total of 35 items (unique plus common) were created by using odd numbered 

items as the old form and even numbered items as the new form.  To create a common item set, 

five items from each form were selected and crossed with the other form, for a total of 10 

common items between the forms.  See Table A-3 in Appendix A for more details.  
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Short tests and small sample sizes were used for two reasons.  The first is such situations 

can be found in practice, and the second is that such situations stress the methodology. 

Equating Relationship/Indirect Estimates  

The indirect estimates, equations (2) and (3) of the equating relationship, where a new 

group who took the even form was equated to the old group who took the odd form, were found 

for all population and sample datasets using the four previously described equating methods.  

Note again that although all equations are for the external anchor situation, except where noted 

the results presented in the next section are for the more common internal anchor situation where 

o represents o + c and e represents e + c. 

Results 

Population Data 

Parameter values.  Mean, variance, covariance, and reliability (coefficient alpha) 

parameters were calculated for each group (Old Group and New Groups 1 to 4) within each 

condition (E1, M1, E2, and M2) and can be found in Tables A-4 through A-7 in Appendix A.  In 

addition and following Woodruff (1986) two group versions of the congeneric model underlying 

Levine-congeneric equating and the classically congeneric model underlying Angoff-Levine 

equating were fit to each of the 20 groups by condition combinations using the Mplus program 

(Muthen & Muthen, 2010).  Both models fit the data fairly well, but the congeneric model fit 

significantly better than the classically congeneric model which is more restrictive than the 

congeneric model.   

In Table A-8 in Appendix A, mean observed differences between the forms and groups 

can be found and were calculated as Observed difference = Form difference for new group + 

Group difference on old form, i.e.,       
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 0 0[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]i i i ie o e o o o          .                       (16) 

The mean difference of the groups on the common items is also given.  Variance differences are 

also given in Table A-8 in Appendix A and were calculated in a manner similar to the mean 

differences calculation.  The results show the mean and variance group differences are consistent 

with what would be expected given the manipulation of the data shown in Table A-2 in 

Appendix A.   

Comparison of methods.  Figures B-1 and B-2 in Appendix B display the A-RLTER of 

the mean and variance indirect estimates for each of the four equating methods.  As can be seen 

when there are only minimal group differences in the mean and variance (New Group 1) all 

methods have very low A-RLTER for both the mean and the variance indirect estimates.  When 

only mean group differences are observed (New Group 2) the Congeneric-Levine 2 and 

Congeneric-Levine 1 methods have the lowest A-RLTER for all mean indirect estimates for 

small and large group differences respectively, and Tucker has the lowest A-RLTER for the 

variance indirect estimates.  When only variance group differences are observed (New Group 3) 

the Tucker methods has the lowest A-RLTER for all mean indirect estimates, the Congeneric-

Levine 1 method has the lowest A-RLTER for the English indirect estimates of variance, and the 

Angoff-Levine method has the lowest A-RLTER for the Mathematics indirect estimates of 

variance.  When both mean and variance group differences (New Group 4) are observed the 

Congeneric-Levine 1 method has the lowest A-RLTER for the English mean and variance 

indirect estimates.  Although the Congeneric-Levine 2 methods has the lowest A-RLTER for the 

Mathematics mean indirect estimates, the Angoff-Levine method has the lowest A-RLTER for 

the Mathematics variance indirect estimates.    
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Sample Data 

Descriptive statistics.  Mean and variance observed differences between the forms and 

groups were calculated for the sample data as previously described for the population data and 

were found to be comparable with their population counterparts.  These results are presented 

Table A-9 in Appendix A. Mean, variance, covariance, and reliability (coefficient alpha) 

statistics for each group (Old Group and New Groups 1 to 4) within each condition (E1, M1, E2, 

and M2) and for each replication within each sample size (N=200, 400, 800) are not presented 

because of their length  

 Comparison of methods.  The A-RLTER of the mean and variance indirect estimates of 

each of the four equating methods for each sample size replication was calculated and the 

average of these statistics was then taken across the 2000 replications.  The Tucker method had 

the lowest mean A-RLTER for the mean indirect estimates when there was only minimal mean 

group differences (New Group 1 and 3) and had the lowest mean A-RLTER for the variance 

indirect estimates when there was minimal variance group differences (New Group 1 and 2).   

Figure B-3 in Appendix B shows the mean A-RLTER of the sample mean indirect 

estimates when group means differ (New Group 2 and 4).  When N=200 and there are small 

mean group differences (E1 and M1) the Tucker or Angoff-Levine methods have the lowest 

mean A-RLTER, but when N=400 or 800 the Angoff-Levine or Congeneric-Levine 2 methods 

have the lowest mean A-RTLER.  When there are larger mean group differences (E2 and M2) 

the Angoff-Levine or Congeneric-Levine 2 methods have the lowest mean A-RTLER for all 

sample sizes, and the Tucker method has much larger mean A-RLTER than all other methods, 

and its A-RLTER does not always decrease as sample size increases, because it is biased. 
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Figure B-4 in Appendix B shows the mean A-RLTER of the sample variance indirect 

estimates when group variances differ (New Group 3 and 4).  When N=200 or 400 and there are 

small English variance group differences (E1) the Tucker method has the smallest mean A-

RLTER and when N=800 the Angoff-Levine has the lowest mean A-RLTER.  When N=200 and 

there are Mathematics small variance group differences (M1) the Tucker method has the smallest 

mean A-RLTER and when N=400 or 800 the Angoff-Levine or Congeneric-Levine 2 method has 

the lowest mean A-RLTER.  For all sample sizes when there are larger group differences (E2 

and M2), the Angoff-Levine or Congeneric-Levine 2 methods have the lowest mean A-RTLER, 

and the Tucker method has much larger mean A-RLTER than all other methods.  Moreover, the 

A-RLTER for the Tucker method does not always decrease as sample size increases, because it 

is biased.   

Sample gamma coefficients.  The sampling properties of the gamma coefficients were 

investigated. Let 0,Mg denote the sample gamma coefficient where the subscript 0 (zero) denotes 

that it was computed in the old group and the subscript M indicates the method. Let 0,M denote 

its parametric counterpart. In this study mean squared error (MSE) for the sample gammas is 

defined as 

 
2000

1 2
0, 0, 0,

1

( ) (2000) ( )M M M
i

MSE g g 



  .                                 (17)  

 
The MSE can be decomposed into two additive parts, sampling error and bias, as defined by the 

following equation 

 2
0, 0, 0, 0,( ) ( ) ( )M M M MMSE g VAR g g     (18) 
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where 0,Mg  is the sample mean of the gamma coefficient and 2
0, 0,( )M Mg   is squared bias.  All 

three of these statistics were calculated for all groups, all conditions, and all sample sizes and the 

results can be found in Figures B-5 through B-7 in Appendix B.   

 First, it should be emphasized that for the sample sizes considered in this study, the MSE 

for all four methods’ gammas are extremely small although the MSE for the Congeneric-Levine 

1 method is relatively larger than the MSEs for the other three methods.  The population gamma 

values have an approximate range of 2.5 to 4.1 across all 20 groups by conditions combinations, 

and all MSEs are less than 0.1.  The relatively larger MSEs for the Congeneric-Levine 1 method 

is likely due to the denominator of the Congeneric-Levine 1 method involving the reliability of 

the relatively short anchor test because the distribution of coefficient alpha depends both on the 

sample size and the number of items (Feldt, Woodruff, & Salih, 1987).  The relationships among 

the MSEs also hold for the random sampling error and bias with all bias values being less than 

.0012.  

Figure B-5 in Appendix B shows that the Tucker method’s sample gamma coefficients 

have the lowest random error followed by the Angoff-Levine, Congeneric-Levine 2, and 

Congeneric-Levine 1.  Figure B-6 in Appendix B shows that when there are small group 

differences (E1 and M1) and when N=200 the Tucker method’s sample gamma coefficients have 

the smallest squared bias.  Otherwise all methods’ sample gamma coefficients have relatively 

small squared bias, although the Congeneric-Levine 1 method’s sample gamma coefficients 

squared bias is relatively larger than the other methods squared bias especially at the smallest 

sample size (N=200).  The non-Tucker gamma coefficients usually have larger squared bias at 

N=200 but then tend to get smaller and closer to the squared bias for the Tucker method gamma 

at the 400 and 800 sample sizes.  Figure B-7 in Appendix B shows that the Tuckers method’s 
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sample gamma coefficients have the lowest MSE followed by the Angoff-Levine, Congeneric-

Levine 2, and Congeneric-Levine 1, respectfully. 

Discussion 

This study assessed, under a variety of conditions, how accurately each of the four linear 

equating methods estimated the indirect means and variances needed in computing the equating 

relationship.  As can be seen from equations (2) and (3) when there are no group differences in 

either mean or variance the choice of method is of little consequence.  However, when group 

differences exist in means, variances, or both means and variances the choice of method does 

make a difference.  

When sample size is small (N=200) and group differences are modest the Tucker method 

is either comparable to or slightly more accurate than the other methods, but as sample size 

increases (N=800) the Tucker method becomes less accurate than the other three methods.  

When group differences are moderate the Tucker method is less accurate than the other methods 

and this inaccuracy increases as sample size increases.  The reason for this behavior is that the 

gamma coefficient in the Tucker method equals the linear regression slope of the unique items 

test score on the anchor items test ignoring measurement error in the anchor test score 

(Woodruff, 1986).  The other three models use a regression model where the regression slope is 

corrected (disattenuated) for measurement error (Woodruff, 1986; Buonaccorsi, 2010).  The 

value of the Tucker gamma will always be less than the gamma values of the other three methods 

and so will underestimate group differences when they exist. 

When group differences exist and the Tucker method is contraindicated, one of the three 

other methods should be used.  As Woodruff (1989) shows, the Angoff-Levine method depends 

crucially on the assumption of unity for the disattenuated correlation between the common item 
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test and the non-common item test, and also the assumption of classical parallelism.  If there is 

any doubt regarding either assumption, then one of the two Congeneric-Levine methods is 

recommended.  If the anchor test is short, with fewer than 20 items, then the second Congeneric-

Levine method is recommended because it requires an estimate of the common item test 

reliability.  If the anchor test is longer, with 20 or more items, then the first Congeneric-Levine 

method, which requires an estimate of the anchor test reliability, can be used.  All reliability 

coefficients are lower bounds for reliability, but as test length increases the gap usually decreases 

(Woodruff & Wu, 2012).  However, the second Congeneric-Levine method has better sampling 

properties as is evidenced in Figures B-5 through B-7.  

Coefficient alpha is used as the reliability estimate in this paper.  However, the generated 

data do not conform to an essentially tau equivalent model and so coefficient alpha is a lower 

bound to reliability.  The simulations show that it is better to use an approximate reliability 

coefficient to correct the linear regression slope (non-Tucker methods) than to make no 

correction at all (Tucker method) when group differences exist and sample size is moderately 

large (800).  At the larger sample size the Tucker method is rarely substantially more accurate 

than the other methods when group differences are small and at times much worse when group 

differences are large. 

The results of this study can assist researchers in choosing the most accurate linear 

equating method for the often used common item nonequivalent groups design.  Research in this 

area helps ensure the comparability of new test forms to old test forms thereby insuring fairness 

in testing over time and multiple forms. 
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Table A-1. 

Mean and Standard Deviation of IRT Parameter Estimates 

 

 

Table A-2.  

Distributions of Examinee Theta Values 

Conditions Old Group New Group 1 New Group 2 New Group 3 New Group 4 
English small 

group differences 
(E1) 

 

N(0, 1) 
 

N(0, 1) 
 

N(0.1, 1) 
 

N(0, 1.1) 
 

N(0.1, 1.1) 
 

Mathematics 
small group 
differences 

(M1) 
 

N(0, 1) 
 

N(0, 1) 
 

N(0.1, 1) 
  

N(0, 1.1) 
 

N(0.1, 1.1) 
 

English large 
group differences 

(E2) 
 

N(0, 1) 
 

N(0, 1) 
 

N(0.25, 1) 
 

N(0, 1.25) 
 

N(0.25, 1.25) 
 

Mathematics large 
group differences 

(M2) 
 

N(0, 1) 
 

N(0, 1) 
 

N(0.25, 1) 
 

N(0, 1.25) 
 

N(0.25, 1.25) 
 

 The given normal distribution variability parameter values are standard deviations not variances.  

 

Test â  b̂  ĉ  

English 0.927 (0.303) 0.067 (0.756) 0.210 (0.094) 
Mathematics 1.108 (0.380) 0.014 (1.048) 0.171 (0.083) 
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Table A-3. 

Items on Each Form 

Form Unique Items 
Number 

of Unique 
Items 

Common 
Items 

Number of 
Common 

Items 

English Odd  

 
3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 
25, 27, 31, 33, 35, 37, 39, 41, 45, 
47, 49, 51, 53, 55, 59, 61, 63, 65, 

67, 69, 71, 73 
 

32 
1, 2, 15, 16, 

29, 30, 43, 44, 
57, 58, 75 

11 

English Even  

 
4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 
26, 28, 30, 32, 34, 36, 38, 40, 42, 
46, 48, 50, 52, 54, 56, 60, 62, 64, 

66, 68, 70, 72, 74 
 

32 
1, 2, 15, 16, 

29, 30, 43, 44, 
57, 58, 75 

11 

Mathematics 
Odd  

 
3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 
27, 29, 31, 33, 35, 39, 41, 43, 45, 

47, 51, 53, 55, 57, 59 
 

25 
1, 12, 13, 24, 
25, 36, 37, 48, 

49, 60 
10 

Mathematics 
Even  

 
2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 
26, 28, 30, 32, 34, 38, 40, 42, 44, 

46, 50, 52, 54, 56, 58, 60 
 

25 
1, 12, 13, 24, 
25, 36, 37, 48, 

49, 60 
10 
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Table A-4.  
 
Form and Group Population Parameters for E1 
 

Parameters Old Group New Group 1 New Group 2 New Group 3 New Group 4

Mean      
New Form 25.0067 25.0112 25.7733 25.0622 25.8411 
Old Form 25.6837 25.6935 26.4681 25.7175 26.4956 

Common Items 6.9401 6.9425 7.1320 6.9331 7.1273 
Variance      
New Form 69.0862 68.9020 69.8301 77.0800 77.6947 
Old Form 71.6085 71.4079 71.7994 79.4970 79.5693 

Common Items 5.8604 5.8652 5.8085 6.3262 6.2636 
Covariance*      

New, Common 11.3690 11.3454 11.4905 12.8838 12.9555 
Old, Common 11.7444 11.7194 11.7811 13.2434 13.2593 

Reliability- Alpha*      
New Form 0.8502 0.8495 0.8547 0.8674 0.8712 
Old Form 0.8600 0.8594 0.8633 0.8754 0.8781 

Common Items 0.6398 0.6404 0.6450 0.6720 0.6762 
*These are Parameters for the External Design 
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Table A-5.  
 
Form and Group Population Parameters for M1 
 

Parameters Old Group New Group 1 New Group 2 New Group 3 New Group 4

Mean      
New Form 20.1677 20.1719 20.8421 20.1998 20.8421 
Old Form 19.4821 19.4854 20.1357 19.5482 20.1662 

Common Items 5.2349 5.2358 5.4398 5.2671 5.4590 
Variance      
New Form 49.1057 49.2475 49.4046 55.1614 55.2550 
Old Form 46.3135 46.5419 47.0368 52.3904 52.8914 

Common Items 5.5516 5.5827 5.6466 6.0817 6.1539 
Covariance*      

New, Common 9.1422 9.1875 9.2906 10.4304 10.5258 
Old, Common 8.7337 8.7982 8.9520 10.0309 10.1929 

Reliability- Alpha*      
New Form 0.8333 0.8333 0.8361 0.8524 0.8546 
Old Form 0.8166 0.8173 0.8219 0.8389 0.8426 

Common Items 0.7044 0.7061 0.7136 0.7335 0.7404 
*These are Parameters for the External Design 
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Table A-6.  
 
Form and Group Population Parameters for E2 
 

Parameters Old Group New Group 1 New Group 2 New Group 3 New Group 4

Mean      
New Form 24.9963 25.0211 26.9461 25.1444 26.9274 
Old Form 25.6768 25.6982 27.6656 25.7423 27.5343 

Common Items 6.9354 6.9405 7.4184 6.9240 7.3606 
Variance      
New Form 68.8447 68.9717 69.8153 88.5608 89.6401 
Old Form 71.4930 71.5234 70.9721 90.6783 90.5503 

Common Items 5.8673 5.8689 5.6410 7.0004 6.7833 
Covariance*      

New, Common 11.3448 11.3691 11.4135 15.0678 15.1520 
Old, Common 11.7196 11.7334 11.6119 15.3935 15.3200 

Reliability- Alpha*      
New Form 0.8493 0.8497 0.8598 0.8868 0.8943 
Old Form 0.8598 0.8599 0.8669 0.8927 0.8986 

Common Items 0.6401 0.6404 0.6484 0.7109 0.7181 
 *These are Parameters for the External Design 



26 
 

 
 

 
Table A-7.  
 
Form and Group Population Parameters for M2 
 

Parameters Old Group New Group 1 New Group 2 New Group 3 New Group 4

Mean      
New Form 20.1815 20.1725 21.8224 20.2520 21.7588 
Old Form 19.4959 19.4812 21.0908 19.6389 21.1157 

Common Items 5.2410 5.2353 5.7389 5.3115 5.7684 
Variance      
New Form 49.1904 49.0154 49.2462 64.0966 64.1083 
Old Form 46.4522 46.4532 47.4668 61.1719 62.2255 

Common Items 5.5750 5.5567 5.7294 6.8340 6.9800 
Covariance*      

New, Common 9.1747 9.1294 9.3680 12.3168 12.5077 
Old, Common 8.7718 8.7634 9.1080 11.9029 12.2452 

Reliability- Alpha*      
New Form 0.8331 0.8327 0.8392 0.8750 0.8795 
Old Form 0.8171 0.8175 0.8278 0.8637 0.8711 

Common Items 0.7054 0.7048 0.7242 0.7681 0.7817 
 *These are Parameters for the External Design 
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Table A-8.  
 
Observed, Form, Group, and Common Item Mean and Variance Population Differences  
 

 Mean Differences Variance Differences 

 Observed Forms Group Common Observed Forms Group Common

New Group 1         

E1 -0.6725 -0.6823 0.0097 0.0024 -2.7065 -2.5059 -0.2006 0.0048 

M1 0.6898 0.6865 0.0033 0.0010 2.9341 2.7056 0.2284 0.0311 

E2 -0.6557 -0.6771 0.0214 0.0051 -2.5214 -2.5517 0.0303 0.0015 
M2 0.6766 0.6913 -0.0147 -0.0058 2.5631 2.5621 0.0010 -0.0184 

New Group 2         

E1 0.0895 -0.6948 0.7844 0.1919 -1.7784 -1.9693 0.1909 -0.0519 

M1 1.3600 0.7064 0.6536 0.2049 3.0911 2.3678 0.7233 0.0950 

E2 1.2693 -0.7195 1.9888 0.4830 -1.6778 -1.1568 -0.5209 -0.2264 
M2 2.3265 0.7315 1.5950 0.4979 2.7940 1.7794 1.0146 0.1543 

New Group 3         

E1 -0.6216 -0.6553 0.0337 -0.0070 5.4715 -2.4170 7.8885 0.4658 

M1 0.7178 0.6516 0.0661 0.0322 8.8479 2.7710 6.0769 0.5301 

E2 -0.5324 -0.5979 0.0655 -0.0114 17.0678 -2.1175 19.1853 1.1331 
M2 0.7561 0.6131 0.1430 0.0705 17.6444 2.9247 14.7197 1.2589 

New Group 4         

E1 0.1573 -0.6545 0.8119 0.1872 6.0862 -1.8746 7.9608 0.4032 

M1 1.3601 0.6760 0.6841 0.2241 8.9415 2.3636 6.5779 0.6023 

E2 1.2506 -0.6069 1.8575 0.4253 18.1471 -0.9102 19.0572 0.9159 

M2 2.2629 0.6431 1.6199 0.5274 17.6561 1.8828 15.7733 1.4050 
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Table A-9  
 
Observed, Form, Group, and Common Item Mean and Variance Sample Differences  
 

 Mean Differences Variance Differences 

 Observed Forms Group Common Observed Forms Group Common

New Group 1         
E1         

N=200 -0.6650 -0.6842 0.0192 0.0064 -2.5321 -2.5166 -0.0155 0.0141 

N=400 -0.6701 -0.6810 0.0109 0.0008 -2.6591 -2.5637 -0.0954 0.0023 

N=800 -0.6672 -0.6852 0.0180 0.0052 -2.8015 -2.4768 -0.3247 -0.0131 

M1         
N=200 0.6975 0.6888 0.0087 0.0093 3.0009 2.7573 0.2436 0.0270 

N=400 0.6873 0.6845 0.0028 0.0010 2.8556 2.7228 0.1328 0.0233 

N=800 0.6893 0.6866 0.0027 0.0015 3.0667 2.7095 0.3572 0.0399 

E2         

N=200 -0.6617 -0.6796 0.0179 0.0079 -2.5096 -2.4184 -0.0912 -0.0303 

N=400 -0.6520 -0.6704 0.0184 0.0033 -2.4724 -2.6127 0.1403 0.0045 
N=800 -0.6426 -0.6734 0.0308 0.0069 -2.5194 -2.5289 0.0095 0.0015 

M2         

N=200 0.6616 0.7008 -0.0392 -0.0143 2.5908 2.5266 0.0642 -0.0246 

N=400 0.6820 0.6923 -0.0103 -0.0061 2.3631 2.5255 -0.1624 -0.0372 

N=800 0.6658 0.6909 -0.0251 -0.0078 2.5682 2.5935 -0.0253 -0.0274 
New Group 2         

E1         

N=200 0.0834 -0.6951 0.7785 0.1913 -1.3998 -2.0607 0.6609 -0.0227 

N=400 0.0832 -0.7004 0.7836 0.1885 -1.7717 -1.9367 0.1650 -0.0633 

N=800 0.0838 -0.6951 0.7789 0.1923 -1.9291 -2.0624 0.1333 -0.0684 
M1         

N=200 1.3648 0.7058 0.6590 0.2084 2.9813 2.3065 0.6748 0.0970 

N=400 1.3719 0.7089 0.6630 0.2091 2.9998 2.3965 0.6033 0.0772 

N=800 1.3512 0.7068 0.6444 0.2017 3.1620 2.3405 0.8215 0.1012 

E2         

N=200 1.2621 -0.7165 1.9786 0.4847 -1.5666 -1.0474 -0.5192 -0.2403 
N=400 1.2766 -0.7286 2.0052 0.4865 -1.7251 -1.1685 -0.5566 -0.2328 

N=800 1.2706 -0.7196 1.9902 0.4833 -1.7860 -1.2071 -0.5789 -0.2283 

M2         

N=200 2.3175 0.7293 1.5882 0.4959 2.7979 1.7564 1.0415 0.1463 

N=400 2.3192 0.7342 1.5850 0.4945 2.6483 1.7435 0.9048 0.1461 
N=800 2.3254 0.7324 1.5930 0.4987 2.7751 1.7248 1.0503 0.1544 

New Group 3         

E1         

N=200 -0.6280 -0.6620 0.0340 -0.0103 5.9065 -2.3497 8.2562 0.5001 
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N=400 -0.6336 -0.6573 0.0237 -0.0103 5.5749 -2.4219 7.9968 0.4697 

N=800 -0.6366 -0.6558 0.0192 -0.0085 5.4421 -2.3497 7.7918 0.4539 

M1         

N=200 0.6956 0.6516 0.0440 0.0283 8.8783 2.6987 6.1796 0.5408 
N=400 0.7340 0.6550 0.0790 0.0372 8.8299 2.7875 6.0424 0.5217 

N=800 0.7237 0.6539 0.0698 0.0330 8.9370 2.7418 6.1952 0.5439 

E2         

N=200 -0.5495 -0.6044 0.0549 -0.0155 16.9486 -2.1490 19.0976 1.1182 

N=400 -0.5070 -0.5990 0.0920 -0.0060 17.0349 -2.1692 19.2041 1.1374 
N=800 -0.5087 -0.5974 0.0887 -0.0068 17.0899 -2.0848 19.1747 1.1348 

M2         

N=200 0.7519 0.6229 0.1290 0.0693 17.5485 2.7802 14.7683 1.2592 

N=400 0.7616 0.6182 0.1434 0.0712 17.5114 2.8886 14.6228 1.2473 

N=800 0.7587 0.6094 0.1493 0.0721 17.6346 2.9814 14.6532 1.2515 

New Group 4         
E1         

N=200 0.1796 -0.6458 0.8254 0.1956 6.3001 -1.9247 8.2248 0.4301 

N=400 0.1507 -0.6519 0.8026 0.1815 6.1078 -1.9785 8.0863 0.4153 

N=800 0.1486 -0.6525 0.8011 0.1862 5.9862 -1.8168 7.8030 0.3814 

M1         
N=200 1.3637 0.6717 0.6920 0.2306 8.8940 2.2899 6.6041 0.6132 

N=400 1.3693 0.6795 0.6898 0.2270 8.8518 2.3579 6.4939 0.5901 

N=800 1.3692 0.6746 0.6946 0.2255 9.0082 2.3320 6.6762 0.6129 

E2         

N=200 1.2583 -0.6128 1.8711 0.4265 18.1145 -0.7706 18.8851 0.8973 

N=400 1.2587 -0.6051 1.8638 0.4277 18.0566 -0.8608 18.9174 0.9067 
N=800 1.2550 -0.6112 1.8662 0.4259 17.9946 -0.8985 18.8931 0.9104 

M2         

N=200 2.2600 0.6409 1.6191 0.5295 17.6479 1.8182 15.8297 1.4053 

N=400 2.2640 0.6415 1.6225 0.5295 17.6223 1.9223 15.7000 1.3997 

N=800 2.2488 0.6423 1.6065 0.5244 17.6240 1.9037 15.7203 1.3915 
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Appendix B 

 
Figures B-1 – B-7 
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