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Abstract

An analysis o f the spatial configuration o f variables in a multivariate system is presented. 
The purpose of the analysis is to make clearer the relationships among the variables by locating 
them in a minimally-dimensioned space. Sim ilarly, individuals are located in the smaller space 
and related to each other on the basis o f the variables measured.

The analysis is then used to locate some colleges on a planar surface on the basis of 
variables given by Astin. In the configuration of colleges in the plane, a college is described in 
terms of its relative orientation to several educational aspects and the resulting single point 
location is suggested as a valuable alternative to profile analysis.
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AN ANALYSIS OF SPATIAL CONFIGURATION  
AND ITS APPLICATION TO RESEARCH IN HIGHER EDUCATION

Nancy S. Cole1 
James W. L. Cole2

Measurement instruments in the social sciences 
are often multivariate. Rarely, however, are the 
variables independent. Typica lly more variables are 
used than the actual dimensionality of the data 
suggests. Such practice appears justified when the 
variables are measures of meaningful characteristics 
but the dimensions o f a smaller dimensioned space 
are not similarly meaningful or conducive to direct 
measurement. Even when justified, the greater 
dimensionality increases the d ifficu lty  o f clinical 
and research use of the data. Therefore, the 
specification o f the variables w ith in  a m inimally- 
dimensioned space would seem to provide a useful 
simplification.

The primary motivation for this analysis of 
spatial configuration is to  provide a method for 
understanding relationships among the variables. 
The information necessary fo r such understanding 
is contained in the correlation matrix, but it is 
quite d ifficu lt to interpret the correlations in the 
matrix simultaneously. The analysis overcomes this 
d ifficu lty  by often achieving a visual representation 
of the variables which can be o f considerable value 
in understanding the relationships among the 
variables.

While using dimension reduction techniques of 
factor analysis and multidimensional scaling, this 
analysis is not intended as a method fo r identifying 
a smaller number o f variables in a system. Thus, 
the use of factor analysis to  replace a large number 
o f variables w ith a few factors has quite a different 
motivation from ours. This analysis reduces the

dimensionality o f the space in which the variables 
are imbedded but retains the variables. If there 
were too many variables in the system before the 
analysis, there w ill still be too many after the 
analysis. The purpose is rather to  present the 
variables in a reduced space in which their relation
ships can be more easily conceived.

A secondary asset of the procedure is that it 
provides a representation o f important aspects of 
some kinds of profile data w ith the result that 
these aspects are more easily and meaningfully 
evaluated than they are in profile form.

The first portion of the paper presents the 
mathematical form ulation o f the method. An 
illustration o f its use and discussion o f its advan
tages and disadvantages in application are pre
sented in the second part of the paper. Readers 
interested in the application to data may prefer to 
start w ith the section beginning on page 5 and use 
the firs t section as a reference fo r the details o f the 
procedure.

*The authors are indebted to  Harold Bechtoldt o f the Univer
sity o f Iowa and Mark Appiebaum of the University o f North 
Carolina for references and encouragement early in the project. 
Douglas R. Whitney o f the University o f Iowa and Gary R. Hanson 
o f ACT made useful contributions at several stages o f the 
development. The critical readings o f the manuscript by Robert A. 
Forsyth o f the University o f Iowa and E. James Maxey and Leo A. 
Munday, both o f ACT, were very helpful.

2
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The Configural Analysis

The basic statistical technique used in this 
analysis of spatial configuration is the technique of 
principal components. First developed in general 
form by Hotelling (1933), principal components 
are linear combinations of variables w ith special 
variance properties. The firs t principal component 
is the normalized linear combination o f the vari
ables with maximum variance. The second is the 
normalized linear combination w ith maximum 
variation orthogonal to the firs t component. Stated 
generally, the i-th principal component is the 
normalized linear combination which maximizes 
the  variance orthogonal to the firs t i—1 
components (Anderson, 1958).

Another interpretation of principal com
ponents involves the defin ition o f a subspace of an 
original space with certain optimal properties. 
Consider N vectors in p-space. The firs t i ( i <  p) 
principal components define an i-dimensional sub
space of the p-space fo r which the sum of squared 
deviations of the N vectors from the i-space is 
minimized. Thus, the i principal components 
define a "best-fitting" i-space fo r the N p-variate 
vectors in the sense of defining the i-space w ith the 
smallest sum of squared deviations. One of the 
earliest uses of this method was in this context o f a 
" f it t in g "  procedure (Pearson, 1901). The two 
interpretations of principal components discussed 
w ill both be useful in understanding the present 
analysis.

This analysis falls logically into two stages. 
Steps 1 and 2 below form the firs t stage, and Steps
3, 4, and 5 comprise the second stage.

Step 1: First Stage Principal Components Analysis

Consider an N x p matrix o f p observations on 
each of N individuals. From this matrix o f observa
tions compute the p x p matrix o f correlations3 R. 
A principal components analysis is then performed 
on R yielding p characteristic roots and a p x p 
loading matrix4 A.

If the N x p observation matrix standardized 
with respect to  the sample means and variances, 
say Z, is considered by columns, each N x 1 
column vector can be plotted in N-space. Then the

correlation between variable i and variable j equals 
the cosine o f the angle between the i-th and j-th 
column vectors o f Z (Harman, 1960, p. 62). The 
i-th row of the loading matrix A can be thought of 
as a new representation o f the i-th column of Z in 
the p-space of the principal component axes. 
Moreover, it can be shown that the angles between 
the rows of A are the same as the angles between 
the columns of Z in N-space. Similarly, it can be 
shown that the row vectors of A are o f un it length 
as are the column vectors o f Z. Thus, the points in 
p-space maintain precisely the same relationship to 
one another held by the original column vectors of 
Z in N-space.

The j-th element o f the i-th row vector o f A 
gives the length o f the projection o f the i-th 
variable vector on the j-th principal component 
axis. The same i,j element o f A also represents the 
correlation between the i-th variable and the j-th 
component axis.

Step 2: Location o f Individuals in the Space of the 
Principal Components

It  is common in principal components analysis 
to  locate the original observation vectors (the rows 
of Z) in the space o f the principal components. 
From the firs t stage principal components analysis 
we know that the j-th row of Z, say z.'- , can be 
expressed as a linear combination of the scores on 
the component axes. Thus, if f_j represents these

Use o f the correlation m atrix here rather than the covariance 
m atrix is essentially equivalent to  the assumption that the variables 
have been standardized w ith respect to their sample variances as well 
as means. While this may in fact sacrifice useful inform ation 
contained in the relative magnitudes o f the variances, in the social 
sciences such inform ation is often of little  value. Moreover, the 
standardization o f the variables has a beneficial effect on their 
behavior under this analysis which w ill be noted.

4 lf  R is essentially o f rank q ( q ^ p ) ,  then there are p — q 
dimensions in which the variability is so small as to  be negligible for 
our purposes. Therefore, in such cases, we consider the components 
corresponding to the q characteristic roots judged d iffe rent from 
zero and the p x q loading m atrix. This option is used only fo r those 
cases in which further computations would be d iff ic u lt because of 
the deficiency of rank. In more common situations, all p dimensions 
should be used.
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component scores (Harman, 1960, p. 360),

z_j = A f_j • (1)

p X 1 p X p X 1

Then _fj may be found by computing

t; = A"1 , (2)

when A is o f rank p. When the rank of A is 
essentially q <  p (cf. footnote 4), A is taken to  be 
a p x q matrix and we make the working
defin ition,

L j = {A 'A P A 'z j . (3)

Since A 'A  is the diagonal matrix o f the character
istic roots, equation (3) gives an easy computa
tional method fo r either the fu ll or deficient rank 
case and w ill be used throughout the remainder of 
the paper.

The scores L j then locate an individual obser
vation in the p-space of the principal components, 
the same p-space in which the variables are located. 
Since both variables and individuals are plotted in 
the same p-space, it is important that the meaning 
o f this operation be made clear as variables and 
individuals are rather d ifferent things.

One way to  understand the results o f such a 
combination is to ask: "What individual score 
vector would have a corresponding component 
score vector f_equal to a given variable point in the 
p-space?" In other words, recalling that the point 
in p-space representing the i-th variable is just the 
i-th row of A or equivalently the i-th column of A ', 
say a_j , we want to find the vector 2 *-̂  such that

z*j = A a_j . (4)

But by the rules of matrix m ultip lication, z_* is the 
i-th column of A A ' which is known to equal R. 
That is to say

the i-th column of R.
That a variable corresponds to  a z score equal 

to  a column of R has some intuitive justification. A 
score on variable j would be expected to  lead to  a

similar score on variable k if j and k are highly 
correlated. Thus, if the score on variable j is one, 
the score on variable k equal to rjk is expected 
simply because of the relation between the 
variables.

It w ill be convenient later in the paper if we 
also find the z corresponding to the centroid of the 
variables in p-space, the mean o f the rows o f A. 
For a^j, the i-th row of A,

aT = (1 /p) 2 a_j . (6 )
i = 1

Then z_*m , the z score corresponding to the 
mean, is given by

—*m  =  A  i
P

(1/p) 2 A a_j
i = 1

= (1/p) 2 L j
i = 1

= 7 . 17)

Thus, the z score corresponding to the centroid o f 
the variable vectors is the average of the rows or 
columns of the correlation matrix.

Step 3: Second Stage Principal Components 
Analysis

Step 3 begins the second stage of the analysis 
o f spatial configuration. In stage one the variables 
and individual observations were located in the 
p-space o f the first stage principal components. 
Now in stage two the problem is to reduce the 
dimensionality of the p-space to a smaller space in 
which the relationships among the variables may be 
more easily understood. Note that we are not 
discussing the reduction of dimensionality o f the 
original observations as that could have been 
accomplished, if desired, in the first stage of the 
analysis. This second stage deals only w ith the 
scatter o f the variable points about the component 
axes.

To accomplish a dimension reduction of the 
variability o f the variable points, we first compute 
the covariance matrix, S, o f the p component 
dimensions over the p variables,

S = (1 /p)A 'A  - £ £ ' ■  (8)

3



From the characteristic roots and loading 
matrix of the second analysis, it can be determined 
if the variable points in p-space lie predominantly 
in a smaller subspace. If the firs t k principal 
components account for most o f the variation of 
the points, then the space of the variables can be 
reduced to a k-space. In other words, if the last 
p — k roots are small, this indicates that the points 
deviate little  from the k-dimensional space spanned 
by the firs t k vectors. As noted above, this 
reduction in dimensionality occurs not in the 
original data but in the dimensions in which the p 
variables d iffer from each other.

Step 4: Projection o f the Variables onto a Smaller 
Subspace

Suppose in Step 3 it  was found that k 
dimensions account fo r most o f the variation of 
the p variables in p-space. Then the p variable 
points in p-space can be projected onto the 
k-dimensioned subspace as follows. Let B be the 
p x k matrix o f loadings from Step 3, and let A * be 
the matrix A standardized fo r the mean a defined 
in (6). Then

A # = A - I T  (9)

and

A * = B H , (10)
p x p  p x k x p

where H = fh i ;  h o i. . . I h J  is the k x p  matrixL-11 - ^ i  i -p j
whose columns, h j, are the vectors o f component
scores o f the i-th variable. H then gives the
projection of the p points onto the k-space and can
be found by

H = (B 'B r 'B 'A ;  . (11)
k x p  k x p x k x p x p

It often conveniently occurs that k is less than 
or equal to two. In such cases, the variables can be 
plotted and visually related to  each other on a 
plane or line.

Step 5: Projection of the Original Observations 
onto the Subspace of the Variables

In Step 2 the observation vector z was located 
in the p-space of the principal components by

computing the component scores f. The vector f, 
after being standardized by the mean £  can be 
projected onto the k-space of the variables as A * is 
projected in equation (11). The two projections, 
firs t from the p-space o f the original variables to 
the p-space of the principal components then to 
the k-space of the variables, can be combined into 
one step. For ĝ . the projection o f observation j on 
the plane, *

g . = (B 'B )'1 B 'd j - a )  (12)

= (B'B)-1 B '(A 'A )_1 A'Czj -7 ) ,  j = 1........ N.

Note that the projection matrix acts on (z — r) 
in (12). The effect this standardization on £has in 
the analysis is that 7 rather than £  (the mean of the 
z's) becomes the baseline for comparisons. The 
elements o f z are related to each other in this 
analysis according to their relative distances from f. 
The intuitive justification fo r this role o f r parallels 
that given on page 3 to  justify  the fact that r 
corresponds to the z score of a variable.

It should be noted that individual observations 
may show considerable variation about the k-space 
of the p variables. Individual observation vectors 
projected onto the k-space relate the individual to 
the primary differential dimensions o f the variables 
considered.

Relation o f the Configural Analysis to  Other 
Techniques

Although principal components is sometimes 
used as a method of factor analysis, the use of 
principal components in this paper is not fo r the 
purpose of finding factors in the usual sense. 
Rather, the purpose of this analysis is more akin to 
th e  pu rpose  o f m u ltid im ensiona l scaling 
(Torgerson, 1958). In scaling there is concern w ith 
nonmetric data and experimental methods for 
finding distances between objects or stimuli w ith 
which we have had no concern. However, our firs t 
stage analysis provides locations of the variables in 
a convenient space and consequently distances 
between them, and our second stage analysis is 
similar to the second step o f multidimensional 
scaling in which a distance matrix is factored.

In spite of the d ifferent motivations, there are 
aspects of factor analysis which relate to  the
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analysis presented here. It has been common in 
factor analysis to p lot variables on the factors 
computed, often as a step leading to  a rotation of 
factor axes (Thurstone, 1947; Thomson, 1951; 
Guilford, 1954; and others). In addition, one 
specific method called the method of extended 
vectors treats test vectors in the space of the factor 
axes by extending the vectors to  a plane perpen
dicular to the firs t factor, or on a un it sphere 
(G uilford, 1954, p. 514). The location o f the 
variable points on this plane or sphere w ill often be 
similar to the configuration of variables achieved in 
our analysis.

A second factor analysis procedure bears some 
resemblance to our method though its purpose is 
entirely different. This is the so-called second order 
factoring. Second order factoring (Thurstone, 
1947; G uilford, 1954) is the procedure of factoring 
the correlation matrix o f nonorthogonal factors

with the purpose of discovering more basic dimen
sions, often in search of a general factor. A t the 
second stage of our analysis we factor the covar
iance matrix o f the components computed only 
over the p variables, and the second stage principal 
components analysis is used strictly as a procedure 
to  f i t  a smaller space to the points, not to discover 
any factors.

One offshoot o f factor analysis and scaling 
which bears certain resemblances to this method is 
the work o f Guttman on the radex (Guttman, 
1954, 1965). Guttman is concerned w ith relation
ships among variables—specifically mental tests—in 
the form  of linear or circular relationships. Some
thing like Guttman's simplex or circumplex 
ordering of variables is often the result o f our 
configural analysis. Guttman's smallest space 
analysis (Guttman, 1968) is a nonmetric approach 
definitely in the spirit o f our procedure.

An Application of the Configural Analysis to Measures of Colleges

In his book, Who Goes Where to College?, 
Astin (1965) presented student input data for 
1,015 four-year colleges and universities. A fte r 
computing factors fo r a sample of colleges with 
extensive data available, Astin used public sources 
of data to  estimate the same factors fo r the 1,015 
institutions. The five estimated student input 
factors were given the following names and inter
pretations by Astin {1965, pp. 54-55):

1. Intellectual ism (I NT). An entering student 
body w ith a high score would be expected to

be high in academic aptitude (especially 
mathematical aptitude) and to have a high 
percentage of its students pursuing careers in 
science and planning to  go on for the Ph.D. 
degrees.

2. Estheticism (EST). An entering student body 
w ith a high score would tend to have a high 
percentage both o f students who achieved in 
literature and art during high school and of 
students who aspire to careers in these fields.
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3. Status (STA). An entering student body w ith a 
high score would be expected to have a high 
percentage of students who come from high 
so c io e co n o m ic  backgrounds and who 
themselves aspire to careers in Enterprising 
f ie ld s  ( la w ye rs , business executives, 
politicians).

4. Pragmatism (PRA). An entering student body 
with a high score would tend to  have a high 
percentage o f students planning careers in 
R ea lis tic  fields (engineering, agriculture, 
physical education) and a low percentage of 
students planning careers in Social fields 
(teaching, sociology, psychology, nursing).

5. Masculinity (MAS). An entering student body 
with a high score would tend to have a high 
percentage o f men, a h igh percentage of 
students seeking professional degrees (LL.B., 
M.D., D.D.S.), and a low percentage of 
students planning careers in Social fields.

These five variables w ill be used here in an analysis
o f spatial configuration.

The variables were given by Astin in a standardized 
form w ith mean of 50 and standard deviation of 
10, but all references to  them here w ill be in an 
alternate standardized form with mean zero and 
standard deviation of one.

A principal components analysis was per
formed on R and the results are given in Table 2.

Table 2

Principal Components Analysis of 
the Correlation Matrix of Astin Variables

Components: 1 2 3 4 5
Roots: 2.281 1.591 0,711 0.220 0.197
Percent Trace: 45.6 31.8 14.2 4.4 3.9

Loadings;

I NT .7110 .5640 .2862 -.2411 -.1 9 0 8
EST -.2 3 9 0 .9002 .2399 .0649 .2662
STA .6174 .5185 -.5 4 2 9 .2183 -.0 8 7 0
PRA .7638 -.3 2 5 6 .4837 .2766 .0062
MAS .8680 -.2 9 6 5 -.2 0 7 9 -.1 8 3 4 .2861

Mean .5442 .2721 .0518 .0271 '' .0561

Step 1

The correlation matrix o f the five variables for 
the 1,013 colleges w ith complete data is presented 
in Table 1.

Table 1

Intercorrelations of Astin Variables5

/N T EST STA PRA MAS

INT 1.00
EST .34 1.00
STA .54 .18 1.00
PRA .43 -.3 4 .10 1.00
MAS .38 -.4 6 .43 .61 1.00

The rows of A, the loading matrix in Table 2, 
locate the variables in five-space.

Step 2

Individual observations can be located in the 
five-space by computing i  in equation (3).

SThe correlation matrix given in Table \ does not exactly agree 
w ith that given by Astin (1965, p. 50). The reason fo r the 
discrepancy is not known. However, the analysis when performed 
on A stin ’s matrix yielded essentially the same results reported here.
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Step 3

The covariance matrix, S, o f the five com
ponents over the five variables is

s =

.1599
-.1481 .2442
-.0282 -.0141 .1396
-.0147 -.0 0 7 4 -.00 1 4 .0433
-.0 3 0 5 -.0 1 5 3 -.0 0 2 9 -.0 0 2 8 .0362

(13)

<B'B) B' =
-1.0161 1.3306 0.0451 0.0160 0.0329

-0.6077 -0 .5 5 2 2  2.4446 0.0857 0.1733
(14)

Then the locations of the five variables in two- 
space can be computed by equation (11). The 
result, H, is given below.

Table 3 gives the results o f a principal components 
analysis on S. The firs t two dimensions in the 
second stage analysis account fo r 81.2% of the 
trace. Thus, we know that the deviations of the 
variable points from their centroid is almost 
contained in a space of two dimensions (i.e., a 
plane). Because of the value o f providing a visual 
representation, we may let k = 2.

Table 3

Second Stage Principal Components Analysis

Components: 1 2 3 4
Roots: 0.356 0.149 0.073 0.044
Percent Trace: 57.2 24.0 11.7 7.1

Loadings:

1 -.3621 -.0 9 0 9 .1433 .0047
2 .4742 —.0826 .1120 .0035
3 .0161 .3655 .0756 .0019
4 .0057 .0128 -.0 8 6 4 .1888
5 .0117 .0259 -.1 6 4 0 -.0921

H =

INT EST STA PRA MAS

0.2171 1.6475 0.2251 -0 .9966 -1.0931

0.2447 0.6287 -1 .6427 1.2652 -0 .4958
(15)

The variables can be plotted on the plane to 
obtain a pictorial representation of the relation
sh ips am ong them. Figure 1 gives that 
representation.

Step 5

The projection matrix, say P, fo r locating an 
individual observation vector (a college) on the 
plane is computed as in equation (12).

P = (B ’B)"1 B’ (A ’A )"1 A '

~0.1218 0.9246 0.1264 -0 .5 5 9 3  -0 .6135

0.3272 0.8409 -2 .1 9 7 2  1.6922 -0.6631
.(16)

Step 4

For B, the 5 x 2 portion of the loading matrix 
outlined in Table 3,

Premultiplying by P a college's vector of scores (or 
a college group mean vector) standardized by r (cf. 
equation (12)) gives the college's (or group's) 
location on the plane.
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Use of the Analysis in Understanding College Differences

The Variables

First, from H in equation (15), the five Astin 
variables were plotted on a plane as shown by the 
points in Figure 1. Recall that this representation is 
the projection of the deviations of the variable 
vectors o f unit length (in p-space) from their mean 
onto the two-dimensional subspace which m ini
mizes the deviation of the variable points around 
it. In this case the plane accounted fo r 81.2% of 
the variation of the variable points.

Figure 1. Location of variables and
their forces on a plane.

The variable points in Figure 1 give informa
tion  about how variables in a vector or profile 
relate to  each other. The distances between the 
variable points as specified in the five-space make 
geometrically precise the idea o f distance implied 
in the correlation matrix as a measure of related
ness. The reduction to the plane retains those 
aspects o f the distances accounted for by the 
variability in the two dimensions. Thus, to  the 
degree that the variable points f i t  the plane, as 
measured by the portion of the trace correspond
ing to  the two dimensions, highly correlated 
variables w ill be represented by proximal points 
and conversely.

A second description of the relationship o f the 
variables can be obtained from the projection 
matrix P in equation (16). By examination of the 
equation

9j  = P ( z j - 7 )  (17)

it is seen that the location o f an individual's 
point g^ on the plane w ill be a weighted sum of 
the columns of P in which the weights are the 
elements o f the difference vector (Zj — f) .  Thus, 
the columns of P, indicated by arrows in Figure 1, 
may be thought o f as forces whose weighted 
resolution (equation (17)) locates an individual in 
the plane.

The location o f Intellectualism (INT) near the 
center o f the plane and w ith a very small force in 
the projection matrix means that the INT score of 
a college, compared w ith its other scores, has a 
relatively small effect in differentiating colleges in 
this plane. Thus, when regions in the plane near 
variable points are considered as relative orienta
tions which colleges may have, the other four 
variables are more dominant as differentiators than 
the INT variable.
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This relatively small importance of the INT 
variable illustrates one of the peculiar aspects of 
this form of analysis. The analysis w ill identify a 
variable such as INT which does not contribute to 
the locating o f colleges in orientation regions 
because it is nearly equally correlated with vari
ables which define the regions. The other side of 
the same coin is the fact that the analysis does not 
reflect differences between colleges on that vari
able, a point to be remembered in subsequent 
comparisons between colleges. Thus, on the one 
hand the analysis reveals the fact that colleges w ith 
each of the other four orientations may be either 
high or low in INT and that no orientation is 
systematically higher or lower than others. That is 
to  say, INT, w ith the strong influence of academic 
aptitude and educational plans, cuts across other 
orientation variables. On the other hand, the 
magnitude of the INT variable, which may be of 
interest in itself, is largely ignored in this analysis.

Colleges, some examples

Given the lim itation of the analysts for this 
particular data, let us consider what the analysis 
does tell us about colleges' orientations. We w ill do 
this by comparing the discussion of college profiles 
and conclusions of Astin w ith our analysis and 
conclusions.

Consider first two profiles which Astin (1965, 
p. 86) used to illustrate his data, those of Rice 
University and Princeton University. An adaptation 
of the profiles is reproduced in Figure 2 for the 
five variables under consideration. Astin discussed 
three kinds o f interpretation that can be made: (1) 
comparison o f scores w ith in an institutional pro
file; (2) comparison with institutions in general; 
and (3) comparison of specific institutions w ith 
each other. Each type of interpretation has a 
parallel based on the configural analysis, but as w ill 
be seen there are definite differences between the 
types of conclusions that can be drawn from the 
two types of analysis.

RICE PRINCETON

—  2.5 —

Figure 2. Profile of two colleges on five Astin variables.



Comparison 1. Astin's comparisons of scores 
w ith in institutional profiles were made on a vari
able by variable basis reflecting the common 
d ifficu lty  in interpreting profile scores. Thus, he 
found that entering students at Rice were much 
lower on Estheticism than on Intellectualism. 
Princeton students were similarly lower on 
Estheticism than other orientations and highest on 
Status and Intellectualism. By contrast, as shown 
in Figure 3, the configural analysis shows each 
college profile as a single point whose location in 
the plane summarizes the important characteristics 
of the profile. Thus, the location of Rice shows the 
resolution of the similarly dominant STA and PRA 
variables with slightly more weight on MAS than 
EST. Princeton, on the other hand, which was 
dominated by STA, is pulled strongly in that 
direction. The comparison of scores w ith in a 
profile by the configural analysis results in a 
summary or resolution of the profile in a single 
point rather than requiring variable by variable 
comparisons.

Comparison 2. To better understand the way 
Astin's second type o f comparison relates to  the 
configural analysis there are several facts that 
should be considered. First, in Astin's analysis the 
institutions formed a population w ith mean of zero 
on all scales. In the configural analysis an institu
tion with a perfectly average score (z = 0) w ill not 
fall exactly at the origin in the plane, but will 
appear at a point near it as indicated by the square 
in Figure 3. In fact, the centroid of the variable 
points in p-space, a point which has been shown to 
correspond to  a score profile o f z = f ,  is a point 
that maps into the origin in the plane. Moreover, it 
can be shown that all profiles parallel to any given 
profile fall at the same point on the plane. 
Therefore, ail profiles parallel to F fall at the origin. 
Note that this means that it is the shape, not the 
level, of the profile which is preserved in the 
transformation to the plane.

In the second type of comparison, both Rice 
and Princeton were above the mean on all vari
ables, a fact that would be noted by Astin's 
analysis of the profiles but not by ours. Thus, if 
the overall level of the profile is o f interest, Astin's 
comparison is definitely preferable. Instead, the 
configural analysis relates the relative orientation 
of a particular college to the mean of all colleges 
by how close to  each other they are on the plane.

Princeton showed a degree o f dominance of the 
STA orientation which is quite unlike colleges in 
general. On the other hand, Rice lies nearer the 
mean fo r all colleges and demonstrates a balanced 
orientation. It should be noted that the balanced 
orientation mentioned may result from several 
types of "balance." The mean fo r all colleges lies 
near the center of the plane and all elements of 
( z —I) are similar and in this sense balanced. Rice, 
on the other hand, lies near the center o f the plane 
more because of the resolution o f the PRA and 
STA forces in opposite directions than because of a 
fla t profile, illustrating another kind of balance 
indistinguishable in the planar configuration from 
the first-mentioned kind. In addition, Astin noted 
that both Rice and Princeton recruit students very 
high in academic aptitude and scientific orientation 
and therefore have high INT scores. As already 
discussed this effect is also largely ignored in our 
analysis because of the small size o f the INT force 
vector.

Comparison 3. In comparing Rice with 
Princeton, Astin noted the great similarities 
between the two schools. The principle difference 
was that Princeton was higher on STA. Since the 
configural analysis concentrates on relative orienta
tions rather than level o f the variables, this 
difference on the STA variable becomes more 
important in comparing the two institutions on the 
plane. Thus, the difference in orientations is 
primarily that Princeton has much greater relative 
orientation to Enterprising fields and high socio
economic status.

Thus, in the three types o f comparisons there 
are both advantages and disadvantages to  each 
method. The two methods have d ifferent purposes 
and lead to different results. The purpose deter
mines the appropriateness or inappropriateness of 
the method to  be used. In this study we avow an 
interest in the relative orientations of colleges to 
different aspects o f the educational enterprise. In 
the coincidence of that purpose w ith the purpose 
of the configural analysis its appropriateness is 
assured. For other purposes other methods would 
be more appropriate.

The locations of several other colleges have 
also been presented in Figure 3. The large state 
universities and technical institutes, located in the 
upper left quadrant, demonstrate the relative orien
tation o f these institutions in Realistic (engineer-
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Figure 3. Location of colleges on the plane.

11



11 I
I

4*
i

10

14 •

•  9

> 2

- - - - - - - - - - | - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - 1 - — ^ — l - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - j - - - - - - - - - - - - - - - - - { - - - - - - - - + ■ - - - - - - - h - - - - - - - - - +  —

7 •  i, 
3 #  !

-h
i
i
i
i

-t*

13

15

•  4

• 12

1. Public universities (109)
2. Public liberal arts colleges (137)
3. Private nonsectarian univ. (46)
4. Private nonsect. lib. arts col. (89)
5. Catholic universities (26)
6. Catholic lib. arts col. (153)
7. Protestant universities (28)
8. Protestant lib. arts col. (231)

9. Teacher colleges (42)
10. Predominantly Negro col. (59)
11. Technical institutes (30)
12. Art institutes (10)
13. Small colleges* (41)
14. Large colleges* (59)
15. Selective colleges* (56)

‘ Small colleges were defined as those w ith a score less than 35 on Astin's size index. Large colleges were those w ith  a 
score greater than 65. Selective colleges were those w ith  a score over 65 on Astin's selectivity index.

Figure 4. Location of groups of colleges on a plane.
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ing, etc.) rather than Social fields. As public 
institutions they lack a strong Status domination, 
have some Masculinity pull, and as a result are 
located generally to  the upper le f t  Teacher col
leges and some former teacher colleges are located 
to  the upper right, reflecting the relative strength 
o f their Social and A rtis tic  orientations. Note that 
two predominantly Negro colleges fall in this 

r quadrant also, suggesting a sim ilarity in orientation
w ith the teacher colleges. Several small, elite 
private women's colleges and artistically-oriented 
liberal arts colleges are located in the lower right 
quadrant. These colleges show STA and EST 
orientations. Elite private universities w ith more 
MAS pull and less Social and EST pull are to  the 
lower left.

Types o f Colleges

The observations made above on the basis of 
the sample of institutions in Figure 3 can be made 
more systematically by computing means fo r 
groups o f colleges of the same type. Fifteen types 
of colleges were considered and these types are 
listed in Figure 4 along w ith the number o f colleges 
included in each group.

The locations of college type means in Figure 
4 support the observations made about where 
types o f colleges fall. It is interesting to  note the 
strong STA orientation (high SES and Enterprising 
emphasis) in the most selective and smallest col
leges. O f course, this result comes as no surprise. It 
is mainly the public institutions which offset the 
Status domination in favor o f a heavy Pragmatic 
orientation w ith emphasis on Realistic vocational 
choices in the universities and Social and A rtistic 
emphasis in the teacher colleges. Thus, clearly the 
public institutions in this country have more 
egalitarian orientations than the private colleges as 
well as technical and social orientations rather than 
business orientations.

One final point to be made is that there seem 
to  be consistent and meaningful distinctions which 
can be made about colleges on the basis o f this 
analysis o f spatial configuration. Recall that these 
distinctions have made very litt le  use of the 
differences in academic ability o f the students. 
Thus, it seems that one can discuss the diversity of 
orientations in American colleges and universities 
in this framework with no reference to or implica
tion of corresponding differences in academic 
ab ility  o f the students.

Other Applications

One important group of instruments fo r which 
the analysis o f spatial configuration seems especi
ally suited is the interest inventories. Here a vector 
o f scores is interpreted in terms of the relative 
orientation o f the individual to  d ifferent interest 
patterns. Often measures o f absolute degree of 
interest in any area covered by the instrument are 
complicated by such things as response sets and are 
therefore not of greatest importance.

A configural analysis o f Holland's Vocational 
Preference Inventory (Cole, Whitney, and Holland, 
in press) has been performed. The analysis was 
helpful in relating the VPI variables to each other, 
in "typ e fy ing " an individual by his location on the 
plane, and in locating occupational groups on the 
plane.

Because of the way the configural analysis 
concerns the dimensions on which variables differ, 
it seems especially appropriate as a way to  study 
the relationships o f scales in an instrument. In a 
paper concerned with differential va lid ity in a

battery o f tests, it was informative to consider the 
pattern of the test variables on the second and 
th ird  principal components (Cole, 1969). A similar 
configuration would be obtained by this analysis. 
When variables are too close together they may be 
measuring too similar a concept. Areas may appear 
in which a measure is called fo r but has not been 
included.

One interesting possibility is to  use the analysis 
at the level o f scale construction in order to 
discover the dimensions on which the items on a 
scale d iffe r.6 Then one can judge which dimensions 
o f item differences seem to be important ones and 
which are to be eliminated. When two scales are 
closely related, items from both may be analyzed 
simultaneously in order to discover overlapping 
items responsible fo r the similarity.

6Gary R. Hanson suggested this use o f the configural analysis 
for item analysis. Preliminary analyses by Hanson suggest that the 
analysis can be very useful in this way.
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