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ABSTRACT

. This paper examines the applicability of traditional, bootstrap, and 

jackknife methodologies for estimating standard errors and obtaining 

confidence intervals for the variance components for persons, items, and 

residuals in a random effects G study p x i design. Principal consideration 

is given to simulation results with binary data, although some simulation 

results for normally distributed data are also reported. The simulations 

suggest that the traditional approach produces accurate results with normally 

distributed data but poor results with binary data, at least for the variance 

component for residuals. The jackknife provides quite accurate results for 

both types of data and for all three variance components. The bootstrap can 

be "made to work" reasonably well but doing so seems to require several ad hoc 

procedures for defining bootstrap samples, which renders the bootstrap 

somewhat less satisfactory than the jackknife for the application considered 

here.
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THE BOOTSTRAP AND OTHER PROCEDURES FOR 
EXAMINING THE VARIABILITY OF ESTIMATED VARIANCE COMPONENTS

IN TESTING CONTEXTS

The Standards for Educational and Psychological Testing (APA, 1985) state

that

. • . the estimation of clearly labeled components of observed 

and error score variance is a particularly useful outcome of a 

reliability study, both for the test developer who wishes to 

improve the reliability of an instrument and for the user who 

wants to interpret test scores in particular circumstances 

with maximum understanding. Reporting standard errors, 

confidence intervals, or other measures of imprecision of 

estimates is also helpful, (p. 19)

The principal purpose of this paper is to examine the applicability of 

several methodologies for estimating standard errors and obtaining confidence 

intervals for variance components in testing contexts. Using the terminology 

of generalizability theory, the specific context considered here can be

characterized as a G study with a random effects p x i design, in which all

examinees respond to the same set of undifferentiated items.* This design can 

be used to estimate three basic variance components— one for persons, one for 

items, and one for residuals.

The variability of estimates of these three variance components is 

examined using traditional, bootstrap, and jackknife methodologies, with 

principal focus on various bootstrap approaches. Each of these methodologies 

is described in a subsequent section, which is followed by a discussion of 

simulation results for normally distributed data and binary data. Binary data

simulations are considered more extensively, because binary data are more

common in testing contexts.



The p x i Random Effects Design and 
Associated Variance Components

In generalizability theory (Cronbach, Gleser, Nanda, & Rajartnam, 1972, 

and Brennan, 1983) one begins by specifying a universe of conditions of 

measurement and a population of objects of measurement. Actually at least two 

universes can be specified, a universe of admissible observations and a 

universe of generalization* Here the universe under consideration is a 

universe of admissible observations consisting of K items, and the population 

consists of N persons. Usually, it is assumed that K + ® and N This

assumption is made below, unless otherwise noted.

Let Xp£ denote the observed score for any person in the population on any

item in the universe. The expected value over items of a person*s observed 

score is

y = E X . . (1)
P i P1

The score can be conceptualized as the examinee*s "mean" score over the 

universe of items. Similarly, the population "mean" for item i is

p. = E X . , (2)l p pi

and the "mean" over both the population and universe is

U = E E X .. (3)pi p i *

Although these mean scores are not themselves observable, an observable score 

can be expressed in terms of them using the following tautology:



3

(4)

or, in abbreviated form

X . 
Pi - V + n + 0. + .p l pi (5)

In Equation 5, n = y ~ P represents the effect for person p,P P
B. = y. - y represents the effect for item i, and n8 . = X . - y - y. + y l i r - pi pi p i

represents the residual effect for person £ and item î  Since there is only 

one observation for each person-item combination, interaction effects and 

other sources of random error are confounded in the residual effects. The 

manner in which the effects in Equation 5 have been defined implies that

E it = E B. = E tt8 . = E tt0 . = 0 . (6)p p . i p pi i pi

Also, most of the effects are necessarily uncorrelated by the manner in which

they have been defined; others are assumed to be uncorrelated. (See Brennan,

1983, pp. 9-10 for more detail.)

For each effect, there is an associated variance, called a variance 

component. For example, the variance component for persons is

a2(p) = E(y - y)2 = E n2 . P P P P
(7)

Similarly,

a2(i) = E(y. - y)2 = E B? and. l . 1 (8)
a.i i



These variance components can be estimated using the data that result 

from administering a random sample of k items from the universe to an 

independent random sample of n persons from the population. This design is 

denoted p x i and called a (C study) random effects design because it is 

associated with a random sampling process for both persons and items. Using 

this design, the usual estimators of the variance components (see Brennan, 

1983) are:

o2(p) = [MS(p) - (l-k/K)MS(pi)]/k , (10)

A

o2(i) = [MS(i) - (l-n/N)MS(pi)]/n , and (11)

o2(pi) = MS(pi) , (12)

where "MS" means "mean square."

Equations 10, 11, and 12 include the finite population and universe

correction factors 1 - n/N and 1 - k/K, respectively. When N -► 00 and K + “

they are both 1, which is the usual assumption. However, for the simulation 

studies considered later that involve binary data, N < ® and K < ® which

necessitates using the finite correction factors. Also, in this case, all

expectations in the above development of the p x i design should be replaced 

by the analogous summation notation. For example, in Equation 1 becomes 

the mean score over the finite universe of items for person p:

K
v = y X ./K . (13)
p iii p1

Also, the grand mean in Equation 3 becomes



N K
y = I I X /NK , (14)

p=l i'l P

5

and using Equations 13 and 14, the variance component for persons in 

Equation 7 becomes

N
a2(p) = £ (y - y)2/(N - 1). (15)

p=l P

Similarly, letting y. be the mean score over the finite population of 

persons for item i, the variance component for items is:

K 2
f2(i) = £ (y. - y) /(K - 1) (16)

i=l 1

Finally, for the residuals,

N K (X . - y - y. + y)2
°2<Pi> =11 P(N - i)(K - i)---  • (17>

P 1

The use of the divisors N-l and/or K-l rather than N and/or K in

Equations 15-17 is based on the Cornfield and Tukey (1956) definitions of

variance components, which are the usual definitions in generalizability

theory (see Brennan, 1983, pp. 48-50).

Standard Errors and Confidence Intervals 
for Variance Components

Assuming that the residual effects, irS ., are normally and independentlypi -------
distributed, Searle (1971, pp. 408-419) shows that

cr2(pi) ~ o2(pi) x2(df .)/df . andpi pi



o[o2(pi)] = {2[o2(pi ) ] z/dfp . }̂ 2 , (13)

where df  ̂ = (n— 1) (k— 1 ) is the degrees of freedom for MS(pi) = oz(pi) .

For a2(p) and az(i) the distributions are unknown even under normality 

assumptions. However, under normality assumptions it can be shown that the 

standard errors are:

a[o2(p)] = {2[o2(pi) + ko2(p)]2/k2dfp + 2[a2(pi)]2/k2dfpi}̂ 2, and (19)

o[o2( i ) ]  = {2[o2( p i ) + no2( i ) ] 2/n2d f . ♦ 2 [ o 2( p i ) ] 2/n2df l 2̂ , (20)

where df = n - 1 and df^ = k - 1 are the degrees of freedom for MS(p) and

MS(i)t respectively (see Searle, 1971).

Even under normality assumptions, of course, the standard errors formulas 

in Equations 18, 19, and 20 cannot be used directly unless the variance 

components themselves are known. With real data, variance components are 

unknown, the assumption of normally distributed score effects is often 

unreasonable and, therefore, the standard errors of estimated variance 

components are unknown.

Considered below, in general terms, are three approaches to estimating 

standard errors of estimated variance components and to obtaining confidence 

intervals for variance components.

Traditional Approach

Assuming mean squares are independent and score effects have a 

multivariate normal distribution, Appendix A provides a general formula for 

the estimated standard error of any estimated variance component. For the 

three estimated variance components of interest here, the resulting estimators 

of the standard errors are:



7

o[a2(p)] = 2[(MS(p)]2 + 2[(l-k/K)MS(pi)]2 
k2(n-l) k2(n-l)(k-l)

(21)

o[a2(i)] - 2[MS(i)]2 + 2[(l-n/N)MS(pi)]2 &nd 
n2(k-l) n2(n-l)(k-l)

(22)

o[o2(pi)] = /
2[MS(pi)3 2 
(n-1)(k~1) ’ (23)

As noted above, the distributions of a2(p) and o2(i) are unknown, even 

under normality assumptions. Under normality assumptions, however, 

Satterthwaite (1941, 1946) proposed a procedure for obtaining approximate 

confidence intervals. His procedure is described in Appendix A.

Bootstrap— General Issues

The bootstrap is a general methodology for assessing how accurate a 

particular 0 is as an estimate of 0 . (See Efron, 1982, for a comprehensive 

theoretical treatment and Efron & Tibshirani, 1986, for a simpler and more 

applied treatment.) The bootstrap substitutes considerable amounts of 

computation for traditional, theoretical analysis. In doing so, often the 

bootstrap is able to deal with issues that are far too complicated for 

traditional statistical analyses. Furthermore, the bootstrap need not (and 

usually does not) involve any assumptions about distributional form. In this 

sense, it is (usually) a completely nonparametric procedure.

From a univariate sampling perspective, the bootstrap can be described in 

the following manner. Let X^, • ••» Xg be independently and identically

distributed as F, and let 0(X1, X2, ..., Xg) be some statistic of interest.
A

Also let the standard deviation of the sampling distribution of 0 be 

denoted o = a(F; 0, s) . Then, the bootstrap estimate of the standard error 

of 0 is

o = o(F; 0, s) , (24)



where F is the empirical distribution putting equal probability mass on each 

of the s observed data points. That is, F is simply the observed set of s 

data points. Using a simple Monte Carlo algorithm, Equation 24 can be 

evaluated even without knowing the form of the expression for o(F; 0, s) .

The algorithm is based on the results of multiple bootstrap samples, 

where each bootstrap sample consists of a random sample of size s drawn with
A

replacement from the actual sample, F • The three steps in the algorithm are

(i) using a random number generator, independently draw a large number of

bootstrap samples, say B of them; (ii) for each sample evaluate the statistic

of interest, say 6, (b - 1, 2, ..., B); and (iii) calculate the sample b
standard deviation of the 9, :b

will be called here the "bootstrap estimate" of 0 . As B -*• ® , °(9^) will 

approach a in Equation 24, the bootstrap estimate of the standard error
a

of 0 . For estimating standard errors, B in the range of 50 to 200 is quite

adequate according to Efron and Tibshirani (1986, p. 56).

The bootstrap can also be used to produce approximate confidence

intervals. For example, an 80% approximate confidence interval for 0 can be

defined as the 10th and 90th percentile points of the distribution of

the 0. . For confidence intervals, however, the computational requirements b
are more substantial. Usually, one wants B > 1000 bootstrap samples (see 

Efron & Tibshirani, 1986, p. 67).

(25)

where

B *
(26)



Bootstrap with the p x i Random Effects Design

Although the bootstrap is conceptually simple in univariate situations, 

it will become evident subsequently that it is unclear how to extend it to 

estimates of variance components generated from the random effects p x i 

design. The crux of the matter is to specify how to draw a bootstrap sample 

from the n x k matrix of observed scores. It might seem that the obvious way 

to do so is: (i) draw a random sample of n persons with replacement from the

sampled persons; (ii) draw an independent random sample of k items with 

replacement from the sampled items; and (iii) let the bootstrap sample consist 

of the responses of the sampled persons to the sampled items. This double 

sampling procedure will be denoted Mboot-p,i."

The boot-p,i procedure seems obvious in that it is similar to the random 

sampling process that generates the observed n x k data matrix. However, it 

is important to note that the boot-p,i procedure involves sampling with 

replacement from the observed data. This means that, except when the 

bootstrap sample is the observed sample, the bootstrap sample matrix will 

contain some repeated persons and some repeated items. Now, it is possible to 

show that o2(p) in Equation 10 is a function of the item covariances, 

and o2(i) in Equation 11 is a function of the person covariances. For 

example, for K -► « an expression equivalent to Equation 10 for o2(p) is:

9

°2(p) = 111*1 I (x . -  x . H x  w -  x. J  pi____i pi_____i_
n - 1 P

> t (27)

which is the average of the unbiased estimates of the item covariances. When 

items are repeated, Equation 27 suggests that a2(p) is likely to be an 

inflated estimate of a2(p), especially when k is relatively small. A similar 

statement holds for o2(i) . The consequences of the boot-p,i procedure 

for o2(pi) and the standard errors of each of the estimated variance



components are not immediately obvious, but they will be illustrated in the 

simulation studies.

Because the boot-p,i procedure seems suspect, three other procedures for 

obtaining bootstrap samples are considered in the simulation studies discussed 

later.

The nboot-p,i,r" procedure involves random sampling with replacement for 

both persons and items as in the boot-p,i procedure plus random sampling with 

replacement from the nk residuals of the form

10

e = X . - X - X. + X (H = 1, 2, ..., nk). & pi p i

Specifically, suppose the independently sampled person, item, and residual are 

denoted p*, i*, and H*, respectively. Then, the data element for person p* 

and item i* in the bootstrap sample matrix is

X .. . = X + (X . - X) + (X. . - X) + e„. p*l* P* !*

The boot-p,i,r procedure was considered because it would appear to circumvent 

the kind of problem indicated above for the boot-p,i procedure.

The other two procedures considered for obtaining a bootstrap sample 

involve sampling only one dimension. The "boot-p" procedure involves sampling 

n persons with replacement, but not items. The "boot-i" procedure involves 

sampling k items with replacement, but not persons. The boot-p and boot-i 

procedures keep items and persons fixed, respectively, in obtaining bootstrap 

samples. Since results are wanted for the situation in which both persons and 

items are random, one would expect that neither of these procedures would be 

completely satisfactory for all variance components. However, it was



hypothesized that these procedures might provide some useful results or 

insights.

Jackknife— General Issues

Quenouille (1949) invented a nonparametric estimator of bias, 

subsequently called the jackknife, although the term "jackknife" is usually 

associated with Tukey, probably because of his extension of Quenouille1s idea 

to a nonparametric estimator of the standard error of a statistic (Tukey,

1958). An often-referenced overview of the jackknife is given by Mosteller 

and Tukey (1968) who also discuss how to use the jackknife in obtaining 

confidence intervals.

Suppose 6 is some parameter of interest and one obtains a set of s data 

points to estimate 9. In general terms, the steps involved in using the 

jackknife are as follows: (i) obtain 0 for all £ data points; (ii) obtain the

s estimates of 0 that result from eliminating each one of the data points, and

let each such estimate be designated 0 .; (iii) obtain the s "pseudo-values"
A A A A

0. . « 0 + (s~1)(0 - 0 .)» (iv) obtain the jackknife estimator of 0 which isJ ~J
the mean of the pseudo-values, 0^ ; (v) obtain the estimate of the standard 

error of the jackknife estimate of 0 :

o ( e T) = ([ ( e . .  -  e ) 2/ [ s ( s - i ) ] k  ,
J j=i J J

which is simply the sample standard deviation of the pseudo-values divided by 

/s- ; and (vi), if desired, obtain the jackknife 100(1 - a) percent confidence 

interval for 0 :

11

0j - t o(0J) < 0 < 0j + t o(0j)

where t is the (1 - a/2) percentage point of Student's t̂ distribution with



s - l  degrees of freedom. The extension of the jackknife to estimated 

variance components resulting from data for a random effects p x i design is 

discussed in Appendix B. The basic steps are those outlined above, but 

several of the steps are somewhat more complicated conceptually and 

computationally.

Efron (1982) considers in some detail similarities and dissimilarities 

between the bootstrap and the jackknife. Both are based on resampling models 

and are primarily nonparametric procedures. As such, they are quite flexible 

and have considerable appeal in complicated contexts such as estimating the. 

variability of estimated variance components with a crossed design. In this 

context, however, an apparently important difference between the bootstrap and 

the jackknife is that the bootstrap involves sampling with replacement while 

the jackknife does not. (Also, to establish confidence intervals with the 

jackknife requires an assumption about the distributional form of jackknife 

estimates, whereas approximate bootstrap intervals require no comparable 

assumption.)

Simulation Results for Normally Distributed Data

The principal, intended focus of this paper is on bootstrap procedures 

with binary data. However, since binary data often introduce added 

complexities in psychometric analyses, and since it is not immediately obvious 

how to extend the bootstrap to a random effects p x i design, it seemed 

prudent to consider normal data, first, in conjunction with traditional, 

bootstrap, and jackknife approaches. The advantage of considering normally 

distributed data is that at least some of the properties of the distributions 

of estimated variance components are known. The principal disadvantage is 

that the assumption of normally distributed data is often unrealistic for the 

p x i design in generalizability theory applications. However, if any one of

12



the approaches considered here does not work with normal data, then it seems 

highly unlikely that such an approach would have much general utility.

Data Generation

Each element in an n x k data matrix was generated using the following 
formula:

X . - y + a(p)z + a(i)z. + o(pi)z . , (28)pi P 1 Pl

where y, a(p), o(i), and a(pi) are prespecified parameter values and Zp, z^, 

and Zp£ are randomly and independently sampled values from a unit normal 

distribution. The z-scores were obtained using the IMSL (1984) subroutine 

GGNML. Since the Xp^ are the sum of normally distributed variables (plus a 

constant, y), it follows that the Xp^ themselves are normally distributed with 

mean y and variance o2(p) + o2(i) + o2(pi) . Implicit in this data generation 

procedure is the assumption that N -► <= and K -*• « .

The simulation results in Table 1 are for c2(p) = 4, o2(i) = 16,

and o2(pi) = 64 with n = 200 persons and k = 20 items. (The parameter y was 

set to 50, but since the focus here is on variance components the value 

of y is irrelevant.) There is always some subjectivity involved in choosing

parameter values and sample sizes for a simulation study. The rationale for

the choices made here was as follows. First, the magnitudes of the variance 

components were chosen to be relatively large in order to highlight relatively 

small differences between comparable statistics. Second, a2(pi) was chosen to 

be considerably larger than either of the other two variance components 

because, in generalizability theory, this is almost always the case with real 

data. Third, a2(p) and o2(i) were chosen to be substantially different 

because this too is a common occurrence in generalizability theory. Fourth, n 

was chosen to be quite large because, with most testing programs that the 

authors encounter, there are a large number of person records available for

13



analysis. Finally, k was chosen to be rather small because a principal focus 

of this research was to examine the potential applicability of the bootstrap 

when relatively small numbers of items are associated with content categories 

in a table of specifications.

14

Insert Table 1 about here

Standard Errors

With normally distributed data and known parameter values, Equations 18,
A A

19, and 20 can be used to obtain exact standard errors for a2(pi), a2(p), and 

o2(i), respectively. With a2(p) = 4, a2(i) = 16, a2(pi) = 64, n = 200, and 

k = 20, these standard errors are reported in the first row of Table 1. They 

are the target values for evaluating the results of the various approaches to 

estimating standard errors. The rest of the table provides results for one 

sample (trial) of size n = 200 persons and k = 20 items.

The row labeled "traditional" provides the estimated variance components 

(using Equations 10-12) and the estimated standard errors (using Equations 21- 

23) for the sample. The estimates are all quite close to the corresponding 

parameters for this particular sample. The largest differences are for items 

(which is to be expected since k is only 20), but even these differences are
A

relatively small. For example, a2(i) = 13.66 with a2(i) = 16, but since the 

exact standard error is 5.29, this difference does not seem very dramatic. 

Also, the estimated standard error of o2(i), namely 4.53, is lower than the 

parameter value 5.29 primarily because a2(i) is less than o2(i) . It is not 

unexpected that the traditional results are reasonably good approximations of 

the parameters because, under the normality conditions that generated the 

data, the estimated variance components are unbiased estimates and the squares



of the estimated standard errors are nearly unbiased estimates (see Appendix 

A).

The next four lines in Table 1 provide bootstrap results for the four

ways of obtaining a bootstrap sample that were outlined previously. For all

results, B = 1000 bootstrap samples were employed. This number is larger than

required for estimating standard errors. However, as discussed later, these

bootstrap samples were used to get approximate confidence intervals, too.

The boot-p,i results are not very accurate. In particular, the bootstrap

estimate of the variance component for persons, o^(p) , is much too large, as

are the estimated standard errors of the estimated variance components for

persons and residuals, o[oMp)] and o[a£(pi)] , respectively. Also,b b
*

a^(pi) is too small. The results for boot-p,i,r are only marginally better,D
primarily because o [a£(pi)] is quite close to its parameter value.b

For the boot-p procedure, the results in boldface for persons and 

residuals are quite accurate, but the estimated standard error for items,
A ^

<j[a2(i)] , is much too low. For the boot-i procedure, the results in b
boldface for items are quite accurate [although a|(i) is a little low], but

D

the results for persons and residuals are less accurate.

In short, the boot-p,i and boot-p,i,r procedures do not produce very 

accurate results for these data, the boot-p procedure produces accurate 

results for persons and residuals but not items, and the boot-i procedure 

produces accurate results for items but not persons or residuals. This 

summary is something of an oversimplification, primarily because boot-i, boot- 

p,i, and boot-p,i,r provide reasonably comparable results for items. However, 

the results in Table 1 provide no compelling reason for preferring the more 

complicated boot-p,i or boot-p,i,r procedures over the simpler and 

computationally quicker boot-p or boot-i procedures— whether one considers 

persons, items, or residuals.

15



It is notable that the boldfaced bootstrap estimates of variance 

components (3.90, 13.08, and 63.45) are all less than the corresponding 

unbiased estimates in the traditional row (3.93, 13.66, and 63.74). From 

these results (and numerous others not reported here) it appears that,
A A

as B ♦ “ : (i) for boot-p, n/(n-l)a|(p) and n/(n-l) o|(pi) are nearlyD D
unbiased estimates; and (ii) for boot-i, k/(k-l) o|(i) and k/(k-l) o|(pi)D o

are nearly unbiased estimates. With n = 200 and k = 20, n/(n-l) = 1.00503 and 

k/(k-l) = 1.05263, and when these correction factors are applied to the 

boldfaced estimated variance components and standard errors in Table 1, the 

results are those in the row labeled "Boot3." The results in this row are 

taken as the bootstrap results, in the sense of the "best" results that were 

obtained using the bootstrap in this situation. They appear quite good 

relative to the traditional results and the parameter values.

Finally, the last row in Table 1 provides the jackknife results. All 

things considered, they appear to be at least as accurate as the traditional 

or bootstrap results. For the jackknife, the estimated standard errors for 

persons and residuals are a little low, but the estimated standard error for 

items is considerably closer to the parameter value than is the traditional or 

bootstrap result.

Confidence Intervals

In principal, one can evaluate standard errors without reference to 

confidence intervals but, in practice, frequently when a standard error is

calculated, it is used (explicitly or implicitly) to establish an interval of

some kind. Therefore, it seems highly desirable that the traditional,

bootstrap, and jackknife approaches be evaluated, in part, with respect to the

approximate confidence intervals that can be obtained using them.

16



Based on the same data and parameter values used to generate the results 

in Table 1, Table 2 provides approximate 80% confidence intervals for the 

variance components.^ Since the distributions of a2(p) and oz(i) are unknown, 

even under normality assumptions, a simulation study was conducted to obtain 

empirical sampling distributions for estimates of each of the variance 

components. This study involved 2000 random samples (or trials) of size 

n = 200 and k - 20. The observed data for each trial were generated using 

Equation 28 with o2(p) = 4, o2(i) - 16, and a2(pi) - 64. The 10th and 

90th percentile points of the three distributions are reported in Table 2. 

They can be used as approximate target values for evaluating the confidence 

intervals from the Satterthwaite, bootstrap, and jackknife procedures.

17

Insert Table 2 about here

The Satterthwaite results are virtually identical to the simulation 

results, as might be expected since Satterthwaite's procedure assumes normally 

distributed data. The bootstrap and jackknife results are quite similar and 

reasonably close to the target values. The most discrepant results are for 

o2(i), where the limits of the bootstrap and jackknife confidence intervals 

are a little too low. As discussed in Appendix B, the jackknife can be 

employed also using logarithms of estimated variance components. For this 

simulation, however, the last row in Table 2 suggests no advantage to using 

logs. Indeed, using logs, the upper limit of the interval for o2(i) is too 

high.

Technically, the above manner of evaluating procedures for establishing 

confidence intervals is ad hoc. In principal, such procedures should be 

evaluated in terms of the proportion of intervals that cover the parameter of



interest. This was done with Satterthwaite19 procedure for establishing 80% 

confidence intervals. To do so, 1000 random samples (trials) of size n = 200 

and k = 20 were generated using Equation 28 with a2(p) = 4, a2(i) = 16, 

and o2(pi) = 64. The resulting proportions of intervals that covered 

o2(p), a2(i), and a2(pi) were 81.7, 81.5, and 79.7, respectively.

Apparently, for the conditions of this simulation, the Satterthwaite intervals 

for a2(p) and a2(i) tend to be a little bit too broad, but not by much.

Coverage simulations were not undertaken for the bootstrap and jackknife 

procedures with normal data because such simulations are quite costly. As 

discussed later, however, more extensive coverage simulations were conducted 

with binary data, which are of greater interest in this paper.

Discussion

The normal data results presented above are somewhat limited in their 

generalizability for two principal reasons.

First, except for Satterthwaite confidence intervals, the basic results 

are for one trial (i.e., one random sample of size n = 200 and k = 20 with 

prespecified values for variance components). Results for a small number of 

trials not reported here tend to confirm the results discussed above, but a 

"complete11 simulation study would involve a systematic analysis from a large 

number of trials. (This is done with the binary data discussed later.)

Second, the results presented above all use o2(p) = 4, o2(i) = 16, and 

a2(pi) = 64 with n = 200 and k = 20. Conceivably, conclusions might differ 

for different patterns of variance components and/or sample sizes. To address 

this issue, at least in part, Appendix C provides one-trial results for 

standard errors (B = 100) for each of three sets of variance components and 

each of three pairs of sample sizes.

The results presented above and those in Appendix C suggest that, with 

normal data: (a) Satterthwaite*s procedure produces very accurate results;
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(b) jackknifing produces quite accurate results, but using logs seems 

unnecessary or even ill-advised; and (c) bootstrapping can be "made to 

work". Specifically, these results suggest using boot-p for persons, boot-i 

for items, and boot-p for residuals if n > k or boot-i for residuals 

if k > n . With normal data, however, there appears to be no need to employ 

anything other than Satterthwaite1s procedure, which is by far the simplest 

and quickest to use.

Simulation Results for Binary Data

To examine traditional, bootstrap, and jackknife approaches with binary 

data, a population of persons and a universe of items were used that consisted 

of N = 2000 persons and K = 200 items. (These persons are a subset of those 

in a data base for a large licensure testing program.) For this finite 

population and universe, a2(p), o2(i), and a2(pi) were obtained using 

Equations 15-17. The results are reported in the last row of Table 3 labeled 

"Parameters," along with standard errors of estimated variance components for 

n = 200 and k = 20. These (approximate) standard errors are the standard 

deviations of the distributions of o2(p), o2(i), and a2(pi) resulting from 

2000 random samples of size n = 200 and k = 20 from the finite population and 

universe.

19

Insert Table 3 about here

Bootstrap Sampling Procedures

The previous results with normal data and n > k suggest using boot-p with 

persons and residuals and boot-i with items. However, as discussed below, an 

alternative procedure works better with binary data.

To examine different procedures for creating bootstrap samples with 

binary data, a simulation study was conducted that employed the boot-p,



boot-i, and boot-p,i procedures in estimating variance components and their

standard errors. This study involved taking 100 random samples (trials) of

size n - 200 and k = 20 from the finite population and universe, with B = 100

bootstrap samples per trial. (Note that each trial involved independent

random sampling without replacement.) The results are summarized in Table 3.

Consider, for example, the boot-p results for persons. Since there were

100 trials, there were 100 values of o2(p), with each value being theB
average a2(p) for 100 bootstrap samples. The mean, over the 100 trials, of b
the o2(p) was .0069; and the standard deviation, over the 100 trials, of the B
ffi(p) was .0017. Similarly, there were 100 values of o[o2(p)] with each
D D

value being the standard deviation of the °£(p) f°r 100 bootstrap samples.
A A

The mean, over 100 trials, of the o[o2(p)] was .0016; and the standardb
deviation, over the 100 trials, was .0003. The other entries in Table 3 are 

interpretable in a similar manner.

Note that with boot-p the bootstrap estimates of o2(p) and o2(pi) that 

are reported in Table 3 are those resulting from multiplying the computed 

estimates by the correction factor n/(n-l) = 200/199 = 1.00503. Similarly, 

for boot-i the correction factor k/(k-l) = 20/19 = 1.05263 was applied to the 

computed bootstrap estimates of a2(i) and o2(pi) . Finally, with boot-p,i the 

correction factor [n/(n-l)][(k/(k-l)] = 1.05792 was applied to the computed 

bootstrap estimates of o2(pi) .

All things considered Table 3 suggests that boot-p is preferable for the 

estimated variance component and standard error for persons, boot-i is 

preferable for the estimated variance component and standard error for items, 

and boot-p,i and boot-i provide quite accurate results for the residuals. It 

is particularly noticeable that the mean of the 100 trial values of 

a[a2(pi)] using boot-p is much too small, which is not the case with normal 

data. Apparently, the nature of the underlying data has considerable
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influence on Che "best” way to obtain bootstrap samples with the random 

effects p x i design.

Although Table 3 indicates that boot-p is preferable to boot-i and boot- 

p,i for estimating the standard error of o2(p) , this standard error is still 

not well estimated. The parameter value is .0021, and the boot-p estimate is 

.0016 with a standard deviation of .0003. This result casts some doubt on the 

applicability of the bootstrap with binary data, even when using the "best” 

procedure for obtaining bootstrap samples.

Standard Errors and Confidence Intervals

Table 4 provides traditional, bootstrap, and jackknife estimates of 

standard errors for five random samples (trials) of size n - 200 and k = 20 

that were drawn from the finite population and universe. As such, Table 4 for 

binary data is analogous to Table 1 for normal data.
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The traditional estimates of standard errors in Table 4 for o2(i) bracket
A A

the parameter value, but for a2(p) and a2(pi) the estimated standard errors 

are systematically too low. Furthermore, o[o2(pi)] is 2-3 times too low!

For each trial, bootstrap results were based on B = 1000 bootstrap 

samples, using boot-p for persons, boot“i for items, and boot-p,i for 

residuals. The bootstrap estimates of standard errors in Table 4 are 

generally closer to the parameter values than are the traditional estimates. 

However, for persons and residuals, the bootstrap estimates of standard errors 

are too low, even though they are better than the traditional results.

The jackknife estimates of standard errors are noticeably more variable 

than either the traditional or bootstrap estimates, but on average the



jackknife estimates seem to be at least as accurate or more accurate than the 

traditional or bootstrap results.

Table 5 provides approximate 80% confidence intervals using the 

Satterthwaite, bootstrap, and jackknife procedures for the five trials in 

Table A. As was done for the normal data simulations, the target values for 

limits of the confidence intervals were defined as the 10th and 90th 

percentile points of the distributions of each of the estimated variance 

components, based on 2000 random samples of size n = 200 and k = 20 from the 

finite population and universe. These results are provided in the first row 

of Table 5.

22

Insert Table 5 about here

Because the magnitudes of the estimated standard errors are generally 

quite small, even quite large parameter-estimate discrepancies in standard 

errors are not likely to lead to confidence intervals that appear to be 

dramatically wrong. This is illustrated by many of the intervals in Table 5.

To gain some perspective on these results, for each trial the one or two 

“best” intervals for each variance component are identified with an asterisk 

in Table 5. These judgments about "best" are admittedly subjective, but they 

do suggest that: (a) Satterthwaite1s procedure does not provide as accurate 

intervals as the other procedures; (b) the bootstrap and jackknife procedures 

provide comparable intervals; and (c) there is no advantage to be gained in 

jackknifing the logarithms of the variance components.

The results in Tables 4 and 5 are limited in that they are based on only 

five trials. Table 6 provides traditional and jackknife estimates of variance 

components and standard errors for 1000 trials, with each trial consisting of 

a random sample (without replacement) of size n - 200 and k = 20 from the



finite population and universe. These results can be compared with the 

bootstrap results in Table 3, although the bootstrap results are for only 100 

trials.
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The results in Table 6 confirm the observations made about the 

traditional and jackknife procedures based on the five trials in Table 4.
a

With the traditional approach, the standard error of a2(p) is somewhat 

underestimated and the standard error of o2(pi) is dramatically 

underestimated. In fact, under the traditional approach, the maximum value of 

o[o2(pi)] is .0052 which is about 50% smaller than the parameter value of 

.0118. Clearly, Equation 23 (for residuals) provides poor results with binary 

data. With the jackknife approach, for all three variance components the mean 

of the estimated standard errors is quite close to the parameter value, but 

there is much more variability in the estimated standard errors for persons 

and residuals than is the case for the traditional and bootstrap procedures. 

For example, the standard deviation of the 1000 jackknife estimates of
A

o[a2(p)] is .0005, which is 2-3 times larger than the comparable traditional 

and bootstrap results.

Using the same 1000 trials that resulted in the statistics reported in 

Table 6, 1000 Satterthwaite and jackknife confidence intervals were obtained 

for each variance component using nominal coverage coefficients of 50%, 80%, 

and 90%. The percents of intervals that actually covered the parameters are 

reported in Table 7. Comparable bootstrap results were not obtained because 

doing so would have required B > 1000 bootstrap samples for boot-p, boot-i, 

and boot-p,i for each of the 1000 trials. This was judged to be excessively 

expensive..
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For the Satterthwaite intervals, the actual coverages for a2(p) are 

somewhat low, and the actual coverages for o2(i) are somewhat high. In other 

words, the o2(p) intervals are somewhat too narrow, and the a2(i) intervals 

are somewhat too broad. Most importantly, however, the actual coverages for 

o2(pi) are dramatically low, which means that the confidence intervals 

for a2(pi) using Satterthwaite's procedure are much too narrow with binary 

data. This result is consistent with the excessively low value for 

o[a2(pi)] using the traditional approach. Clearly, the fact that binary data 

violate the normality assumptions in Satterthwaite*s procedure causes this 

procedure to work poorly with the variance component for residuals.

Almost without exception, the actual coverages for the jackknife 

intervals are somewhat too low, implying that the intervals are a little bit 

too narrow. However, the results in Table 7 for the jackknife suggest that, 

all things considered, the jackknife provides confidence intervals that are 

quite accurate for practical use.

Summary and Conclusions 

The simulation studies reported in this paper suggest the following 

conclusions with respect to examining the variability of estimated variance 

components for the p x i random effects design:

(a) The traditional approach (estimated standard errors using Equations

18-20 and Satterthwaite confidence intervals) provides accurate results for

all three variance components with normal data; however, with binary data, the

traditional approach provides only moderately accurate results for the person

and item variance components and quite inaccurate results for the residual 

variance component;



(b) The jackknife approach provides quite accurate results with both 

normal and binary data for all three variance components— its primary 

limitation being more variability in estimated standard errors than was found 

with the other approaches;

(c) Computing jackknife pseudo-values based on the logarithms of 

variance components is not advisable— at least for situations similar to those 

that characterized these simulations; and

(d) As discussed below, the bootstrap results are mixed, largely because 

there seems to be no single "best" way to obtain bootstrap samples.

The bootstrap simulation results suggest that the "best" procedure with 

normal data is to use boot-p for persons, boot-i for items, boot-p for 

residuals if n > k or boot-i for residuals if k > n. In particular, it does 

not appear that it is advisable to use boot-p,i with normal data for 

estimating standard errors or obtaining confidence intervals for any of the 

variance components. With binary data, however, all things considered the 

"best" procedure is to use boot-p for persons, boot-i for items, and boot-p,i 

for residuals. Furthermore, it seems advisable to adjust the boot-p, boot-i, 

and boot-p,i estimates of variance components and their standard errors by the 

correction factors n/(n-l), k/(k-l), and [n/(n-l)][k/(k-l)], respectively.

In this sense, it might be stated that the bootstrap "works," but it is 

somewhat disconcerting that correction factors are needed, and that different 

bootstrap sampling procedures are required depending on the particular 

variance component under consideration and the nature of the underlying 

data. Furthermore, for the binary data simulations, the boot-p estimates 

of a[o2(p)] are somewhat low, which implies that confidence intervals 

for o2(p) are somewhat too narrow for the parameters and sample sizes in this 

study.
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Another limitation of the bootstrap is that it is not clear how to extend 

its use to estimating standard errors and confidence intervals for functions 

of variance components. For example, the estimated error variance
A  A  A

a2(A) = [o2(i) + a2(pi)]/k is often reported in generalizability analyses.

To estimate its standard error using the bootstrap, a particular bootstrap 

sampling procedure must be chosen. However, the simulation results reported 

above do not clearly indicate how best to obtain such bootstrap samples.

Since generalizability analyses often involve several different functions of 

variance components, this problem is of some consequence.

In terms of complexity and computational requirements, the traditional 

approach i9 simple and quick, and the jackknife is conceptually complex but 

not too demanding computationally— at least for the sample sizes considered 

here. The application of the bootstrap considered here, however, is somewhat 

complex and requires considerably more computation than the jackknife. Recall 

that bootstrap samples need to be formed in two or three ways, and B > 1000 

sample are necessary to establish confidence intervals. In effect, this means 

that applying the bootstrap with the p x i random effects design requires 

2000-3000 analyses of variance with matrices of size n x k if one wants to 

establish confidence intervals for the variance components. These 

computational requirements may be excessive in some circumstances.

On balance, it would appear that the bootstrap has some limitations as a 

methodology for addressing questions about the variability of estimated 

variance components with the random effects p x i design. This is unfortunate 

since the nonparametric characteristics of the bootstrap appear to make it 

especially attractive in testing contexts where normality assumptions are 

known to be violated because the data are binary.
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On a positive note, however, the results in this paper suggest that the 

jackknife produces quite accurate results in such contexts. Furthermore, 

future research may reveal that there is a different way to conceive of 

bootstrap samples that avoids some of the limitations identified in this 

paper.
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On a positive note, however, the results in this paper suggest that the 

jackknife produces quite accurate results in such contexts. Furthermore, 

future research may reveal that there is a different way to conceive of 

bootstrap samples that avoids some of the limitations identified in this 

paper. 
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Estimated Standard Errors and Satterthwaite*s Confidence 
Intervals for Variance Components

Assuming mean squares are independent and score effects have a multivariate

normal distribution, Searle (1971, pp. 415-417) shows that an estimated standard

error of any estimated variance component, o2(y), is:

olo2(r)] = [£ 2<f ,MS.)2/df .I1* (Al)
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where j indexes the mean squares that enter a2(y), fj is the coefficient of MSj in
A

the linear combination of the MSj that gives a2(y), and dfj is the degrees of
A A

freedom for MSj. Technically, o 2[o 2(y )] is a biased estimator of the variance 

of o2(y). It can be transformed to an unbiased estimator by replacing dfj with dfj 

+2. All estimated standard errors in this paper employ Equation Al (rather than 

the companion equation involving dfj + 2) for two reasons. First, technically, 

Equation Al is required for the confidence intervals discussed below. Second, 

because degrees of freedom are relatively large for all analyses reported in this 

paper, using dfj + 2 rather than dfj makes virtually no noticeable difference in the 

results.

The exact distribution of estimated variance components is generally unknown, 

even under normality assumptions. Based on such assumptions, however, Satterthwaite 

(1941, 1946) proposed the following approximate 100(1 - a) percent confidence 

interval for estimated variance components:

A A

— ElMs!--- < 02(y) < -° lh± «_ , (A2)
x \ - a / 2 M  *Ja/2(v)



where v is called the "effective11 degrees of freedom, and y 2i //»(v ) and y 2 /^(^)1-0/2 a/2
are the l-a/2 and a/2 percentage points, respectively, of the chi-squared 

distribution with v degrees of freedom.

Brennan (1983) shows that, for the types of estimators of variance components 

considered in this paper, v = 2r2 where

r = o 2(y)/o[o2(Y)] (A3)

is the ratio of the estimated variance component to its estimated standard error. 

Based on this simplification, Brennan (1983, pp. 137-140) provides a table for 67, 

75, 80, 90, and 95 percent confidence intervals given any one of 150 values of r 

between 2 and 100. For most purposes Brennan's table provides accurate enough 

results. For purposes of this paper, however, more numerical accuracy was desired, 

which involved using the IMSL (1984) subroutine MDCHI in conjunction with Equation 

A2.

Welch (1956) proposed a relatively complicated correction factor for use with 

Satterthwaite's approximate confidence intervals. Welch derived his correction 

factor using assumptions different from those of Satterthwaite, and Welch himself 

expressed reservations about practical use of the correction factor (see Welch, 

1956, p. 145). Even so, Cronbach et al. (1972, p. 53), Graybill (1961, pp. 368- 

382), and Smith (1982) seem to be favorably disposed to using the correction 

factor. However, a study by Boardman (1974) does not support its use, and more 

recently Graybill (1976, pp. 642-643) has chosen to neglect it completely in his 

textbook treatment of variance components. For these reasons, Welch’s correction 

factor was not employed for the analyses reported in this paper.
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Jackknife Estimates, Their Standard Errors and 
Confidence Intervals for the p x i Random Effects Design

Based on advice from John Tukey, Cronbach et al. (1972, pp. 54-57, 66, 70-72)

outline a jackknife procedure for estimating the standard errors of estimated

variance components and for establishing confidence intervals for variance

components. The basic elements of this procedure were employed by Collins (1970) in

a fairly large simulation study. Provided below is an outline of how to employ the

jackknife with the p x i design.

Consider the following notational conventions:
A

0 - any estimated variance component for the p x i design based on

analyzing the full n x k matrix [i.e., 0 could be a2(p), a2(i), or 

a2(pi)]
A A

0. '. - value of 0 for the (n-1) x (k-1) matrix that results from -pi
eliminating person p and item i;

A A

0 _ = value of 0 for (n-1) x k matrix that results from eliminating-p0
person p;

A A

0 q . =  value of 0 for the n x (k-1) matrix that results from eliminating

item i;
A A A A

0_QQ = value of 0 for original n x k matrix (i.e., 0 = •

Now, the pseudo-value for person p and item i is:

A A A A A

0. . = nk0 - (n-l)ke - n(k-l)9 . + (n-l)(k-l)0 . . (Bl)*pi -00 -pO -Oi -pi

The mean of all nk pseudo-values is the jackknife estimator of 0 !
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For the types of estimators usually employed in generalizability theory 9 = 6  which
/s.

is an unbiased estimator of 9 . For example, if 0 = a2(p) = [MS(p) - MS(pi)j/k , 

then 9j - a2(p) = a2(p) = 9 , which is an unbiased estimator of 9 = o2(p) .
A Ak

To estimate the standard error of 9 = 0  using the jackknife procedure,
J

we employ the matrix of pseudo-values, which has n rows and k columns. For this
A A A

matrix let o2(rows), o2(cols), and o2(res) be the estimated variance components

taking into account sampling from a finite population and/or universe if

N < «> and/or K < ® , respectively. (Use Equations 10, 11, and 12 with "rows,”

"cols,” and "res” replacing p, i, and pi, respectively.) Then the estimated 

standard error of 9 is:
J

A A A  A A 1
o(9.) = [c o2(rows)/n + c. a2(cols)/k + c c.o2(res)/nk] , (B3)J n k n k

where cn = 1 - n/N and c^ = 1 - k/K are the finite population and universe 

correction factors, respectively. [Note that, in their discussion of the jackknife, 

Cronbach et al. (1972, pp. 56, 71) incorrectly suggest that the result in Equation 

B3 be divided by the square root of nk.]

To this point the jackknife procedure is nonparametric in that none of the 

above results make any assumptions about distributional form. To establish 

confidence intervals, however, student's t distribution is usually employed (see 

Mosteller and Tukey, 1968, p. 135). Thus, a 100(l-a) percent confidence interval 

for 9 is

9j - t o(9J) < 9 < 9j + t o(0J) , (B4)

where t is the (1 - a/2) percentage point of the t distribution with



nk - 1 degrees of freedom (see Collins, 1970, p. 29). In this paper, interest 

focuses on designs in which nk - 1 is quite large, and for such designs the unit 

normal distribution can be used in place of Student's t.

Actually, Cronbach et al. (1972) and, to an extent, Collins (1970) both suggest 

jackknifing the logarithm of estimated variance components rather than the estimates 

themselves. Specifically, for variance components Cronbach et al. (1972) use as 

pseudo-values

0*pi = nk l08 9-oo ' (n~1)k l0S e-po " n(k_1) l°8 e-0i

+ (n-l)(k-l) log 0 . . (B5)-pi

Then, when the limits of a confidence interval are obtained in the log metric, they 

are transformed back to the original metric using antilogs. Of course, the usual 

estimates of variance components can be negative, and one cannot take the log of a 

negative number. To avoid this, Tukey suggests the possibility of using fifth roots 

rather than logs in Equation B5 when negative estimates are likely. With samples as 

large as those of interest in this paper, negative estimates are not very likely, 

however. Usually, the principal effect of using logs is that the resulting 

confidence intervals are broader, especially for effects with relatively small 

numbers of observations.
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Tables Illustrating Results of Different Procedures for Estimating 
Variance Components and Their Standard Errors for 

Normally Distributed Data

Subsequent pages provide illustrative results for the following nine

combinations of three sets of variance components and three sets of sample sizes.

APPENDIX C

Table o2(p) □ 2(i) a2(pi) n k

Cl 4 16 64 200 20
C2 4 16 64 100 40
C3 4 16 64 50 50
C4 16 16 64 200 20
C5 16 16 64 100 40
C6 16 16 64 50 50
C7 16 16 16 200 20
C8 16 16 16 100 40
C9 16 16 16 50 50

Note that all bootstrap results are based on B = 100 bootstrap samples.
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TABLE Cl

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 200 and k = 20

_____Persons_____ ______Items______ Interaction
A A A

az(p) o[o2(p)] a2(i) a[a2(i)] a2(pi) a[a2(pi)]

Parameters A.00 .73

Estimates

Traditional 4.36 .76

Boot p,i 7.22 1.58

Boot p,i,r 7.46 1.23

Boot p 4.01 .87

Boot i 7.59 1.22

Boota 4.03 .87

Jack-knife** 4.36 .85

16.00 5.29 64.00 1.47

18.19 6.01 63.72 1.47

17.38 5.27 60.37 2.73

17.81 6.48 60.14 1.34

18.40 .96 63.39 1.42

17.12 5.21 60.56 1.57

18.02 5.48 63.71 1.43

18.19 6.59 63.72 1.22

Note. Bootstrap results are based on 100 bootstrap samples.
A A

aObtaining a2(p)t a2(pi) and their standards error from bootstrapping persons;
A

and a2(i) and its standard error from bootstrapping items. Reported values
A A

for o2(p) and o2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.00503, and the reported value of o2(i) and its standard error employs the 
correction factor k/(k-l) = 1.05263.

^Based on full matrix of 200 x 20 = 4000 pseudo-values.
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TABLE C2

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 100 and k = 40

Persons Items Interaction

a2(p) o[a2(p)] a2(i) o[o2(i) ] o2(pi) cr[o2(pi) ]

Parameters

Estimates

4.00 .79 16.00 3.77 64.00 1.46

Traditional 3.75 .76 8.26 2.02 63.68 1.45

Boot p,i 5.25 1.46 8.31 2.11 61.74 2.30

Boot p,i,r 5.31 .96 8.51 1.75 61.41 1.36

Boot p 3.68 .84 8.83 .73 63.14 1.34

Boot i 5.35 .77 7.83 1.77 62.26 1.50

Boota 3.72 .85 8.03 1.82 63.77 1.35

Jackknife^ 3.75 .73 8.27 1.86 63.68 1.59

Note. Bootstrap resuLts are based on 100 bootstrap samples.
A A

aObtaining o2(p), a2(pi) and their standards error from bootstrapping persons; 
and o2(i) and its standard error from bootstrapping items. Reported values 
for o2(p) and o2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.01010, and the reported value of o2(i) and its standard error employs the 
correction factor k/(k-l) = 1.02564.

^Based on full matrix of 100 x 40 = 4000 pseudo-values.
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TABLE C3

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 50 and k = 50

Persons Items Interaction

2(p) a[o2(p)] a2(i) o[a2(i)] a2(pi) o[a2(pi)]

Parameters 4.00 1.07

Estimates

Traditional 4.25 1.12

Boot p,i 5.21 1.53

Boot p»i,r 5.46 1.26

Boot p 3.98 .98

Boot i 5.47 .82

Boota 4.06 1.00

Jackknife^ 4.25 1.07

16.00 3.49 64.00 1.85

11.50 2.58 63.30 1.83

12.50 2.86 60.97 3.28

12.40 2.49 60.26 1.39

12.79 1.04 62.10 2.06

11.37 2.32 62.27 1.78

13.05 2.37 63.36 2.10

11.50 2.39 63.30 2.11

Note. Bootstrap results are based on 100 bootstrap samples.
A A

aObtaining a2(p), a2(pi) and their standards error from bootstrapping persons}
A

and o2(i) and its standard error from bootstrapping items. Reported values
A A

for o2(p) and a2(pi) and their standard errors employ the correction factor n/(n-l) 
- 1.02041, and the reported value of o2(i) and its standard error employs the 
correction factor k/(k-l) = 1.02041.

^Based on full matrix of 50 x 50 = 2500 pseudo-values.
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TABLE C4

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 200 and k = 20

_____Persons_____ ______Items______ Interaction

o2(p) o[o2(p)] o2(i) o[o2(i)] a2(pi) a[a2(pi)]

Parameters 16.00 1.93

Estimates

Traditional 16.20 1.94

Boot p,i 19.12 3.02

Boot p,i,r 19.40 2.34

Boot p 15.84 2.37

Boot i 19.48 1.41

Boota 15.92 2.38

Jackknife*5 16.20 2.19

16.00 5.29 64.00 1.47

18.86 6.22 62.37 1.43

18.38 7.53 58.95 2.47

17.17 6.19 58.94 1.28

19.21 1.11 62.29 1.27

18.04 7.21 59.12 1.71

18.99 7.59 62.60 1.28

18.86 7.92 62.37 1.21

Note. Bootstrap results are based on 100 bootstrap samples.
A A

aObtaining c2(p), o2(pi) and their standards error from bootstrapping persons; 
and o2(i) and its standard error from bootstrapping items. Reported values

A A

for o2(p) and o2(pi) and their standard errors employ the correction factor n/(n-l)
A

= 1.00503, and the reported value of a2(i) and its standard error employs the 
correction factor k/(k-l) = 1.05263.

^Based on full matrix of 200 x 20 = 4000 pseudo-values.
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TABLE C5

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 100 and k. = 40

Persons Items Interaction

o2(p) a[o2(p)] o2(i) o[a2(i)]
a

o2(pi) a[o2(pi)]

rameters

limates

16.00 2.50 16.00 3.77 64.00 1.47

Traditional 16.25 2.53 20.82 4.56 62.36 1.42

Boot p,i 17.44 2.77 21.31 4.64 60.43 2.58

Boot p,i,r 17.54 2.92 20.48 3.97 59.99 1.29

Boot p 15.96 2.37 21.46 1.13 61.88 1.51

Boot i 17.73 1.22 20.62 4.24 60.61 1.37

Boota 16.13 2.39 21.15 4.35 62.50 1.53

Jackknife^ 16.25 2.73 20.82 4.45 62.36 1.62

Note. Bootstrap results are based on 100 bootstrap samples.
aObtaining o2(p), o2(pi) and their standards error from bootstrapping persons;
A

and a2(i) and its standard error from bootstrapping items. Reported values
A A

for o2(p) and o2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.01010, and the reported value of a2(i) and its standard error employs the 
correction factor k/(k-l) = 1.02564.

^Based on full matrix of 100 x 40 = 4000 pseudo-values.



41

TABLE C6

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 50 and k - 50

Persons Items Interaction

a2(p) a[a2(p)] a2(i) a[a2(i)]. a2(pi) a[o2(pi)]

Parameters 16.00 3.49 16.00 3.49 64.00 1.85

Estimates

Traditional 10.06 2.30 18.41 3.98 64.98 1.88

Boot p,i 10.41 3.10 19.66 4.09 62.25 3.00

Boot p,i,r 11.23 2.51 18.84 4.08 62.35 1.62

Boot p 9.21 2.37 19.66 1.57 63.63 1.69

Boot i 11.43 1.43 18.37 3.45 63.47 1.87

Boota 9.40 2.42 18.74 3.52 64.93 1.72

Jackknife^ 10.06 2.69 18.41 4.06 64.98 1.65

Note. Bootstrap results are based on 100 bootstrap samples.
A A

aObtaining o2(p), a2(pi) and their standards error from bootstrapping persons; 
and o2(i) and its standard error from bootstrapping items. Reported values

As A

for o2(p) and a2(pi) and their standard errors employ the correction factor n/(n-l)
a

= 1.02041, and the reported value of a2(i) and its standard error employs the 
correction factor k/(k-l) = 1.02041.

LBased on full matrix of 50 x 50 = 250 pseudo-values.
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TABLE C7

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 200 and k - 20

_____Persons_____ _____ Items______ Interaction
A A A

o2(p) o[o2(p)] o2(i) o[a2(i)] o2(pi) a[o2(pi)]

Parameters

Estimates

16.00 1.68 16.00 5.22 16.00 .37

Traditional 16.47 1.73 9.11 2.98 15.20 .35

Boot p,i 17.01 1.92 8.67 2.87 14.35 .75

Boot p,i,r 17.09 1.58 8.75 2.70 14.38 ooCM.

Boot p 16.21 1.67 9.17 .37 15.18 .34

Boot i 17.25 .61 8.65 2.83 14.38 .51

Boota 16.30 1.68 9.11 2.98 15.25 .34

Jackknife** 16.46 1.76 9.11 3.09 15.20 .42

Note. Bootstrap results are based on 100 bootstrap samples.
a  a

aObtaining o2(p), o2(pi) and their standards error from bootstrapping persons;
a

and a2(i) and its standard error from bootstrapping items. Reported values
A A

for o2(p) and o2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.00503, and the reported value of a2(i) and its standard error employs the 
correction factor k/(k-l) = 1.05263.

^Based on full matrix of 200 x 20 = 4000 pseudo-values.
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TABLE C8

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n - 100 and k = 40

Persons

o2(p) a[o2(p)]

Parameters 16.00 2.33

Estimates

Traditional 17.20 2.50

Boot p,i 17.10 2.78

Boot p,i,r 17.37 2.55

Boot p 16.79 2.55

Boot i 17.59 .55

Boota 16.96 2.58

Jackknife*5 17.20 2.60

Items Interact ion

a2( i ) o[a2(i)] o2(pi) o[02 (pi ]

16.00 3.66 16.00 .36

13.07 3.00 16.30 .37

13.02 2.35 15.86 .62

12.97 1.97 15.71 .34

13.26 .54 16.21 .37

12.79 2.27 15.93 .36

13.12 2.33 16.38 .37

13.07 2.31 16.30 .39

Note. Bootstrap results are based on 100 bootstrap samples.
"" A A

aObtaining a2(p), a2(pi) and their standards error from bootstrapping persons;
A

and a2(i) and its standard error from bootstrapping items. Reported values
A A

for a2(p) and a2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.01010, and the reported value of a2(i) and its standard error employs the 
correction factor k/(k-l) = 1.02564.

^Based on full matrix of 100 x 40 = 4000 pseudo-values.
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TABLE C9

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 50 and k - 50

Persons Items Interaction

o2(p) a[o2(p)] o2(i) a[a2(i)] a2(pi) o[o2(pi)]

Parameters

Estimates

16.00 3.30 16.00 3.30 16.00 .46

Traditional 15.23 3.14 16.65 3.43 15.99 .46

Boot p,i 15.58 3.01 16.31 3.78 15.34 .74

Boot p,i,r 15.05 2.65 16.58 3.75 15.44 .49

Boot p 15.20 2.78 17.12 .67 15.67 .40

Boot i 15.59 .70 15.88 3.68 15.68 .40

Boot® 15.51 2.84 16.21 3.76 15.99 .41

Jackknife** 15.23 2.73 16.65 3.71 15.99 .39

Note. Bootstrap results are based on 100 bootstrap samples.
a a

aObtaining o2(p), o2(pi) and their standards error from bootstrapping persons; 
and o2(i) and its standard error from bootstrapping items. Reported values 
for o2(p) and o2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.02041, and the reported value of o2(i) and its standard error employs the 
correction factor k/(k-l) = 1.02041.

^Based on full matrix of 50 x 50 = 2500 pseudo-values.
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Footnotes
*A more realistic design for most testing contexts would be p x (i:h) where 

each item is nested within a single content category, h, and categories are fixed 

(see, for example, Jarjoura & Brennan, 1982). This more realistic design was judged 

to be too complicated, at this stage of research, for a comparative treatment of

traditional, bootstrap, and jackknife methodologies.
2 . t Throughout this paper, the nominal coverage for confidence intervals

(confidence coefficient) is for a single variance component. If one were equally

interested in confidence intervals for all three variance components in some

specific situation, then one might want to consider the joint coverage for all three

variance components simultaneously (see Bell, 1986). This can be done using a

method proposed by Khuri (1981) or Satterthwaite1s procedure can be modified.

Specifically, for joint 100(1 - o) percent confidence intervals, a in

equation A2 should be replaced by a' = 1 - (1-a)^^ . This is equivalent to

obtaining Satterthwiate intervals with individual coverages if 100(1 - a")

percent. For example, for q = 3 joint 80% confidence intervals, one uses 
1/3a" = 1 - (1 - .2) = .0717 , which is equivalent to obtaining intervals with

individual coverages of about 93%.

Arvesen and Schmitz (1970) also employ the jackknife in a variance components 

situation, but they treat a nested design, only, not a crossed design.
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TABLE 1

Estimates of Variance Components and Their Standard
Errors for Normally Distributed Data Based on a Sample

of Size n = 200 and k = 20

Persons Items Residuals

a2(p) o[o2(p)] a2(i) o[a2(i)] a2(pi) a[a2(pi)]

Parameters

Estimates

4.00 .73 16.00 5.29 64.00 1.47

Traditional 3.93 .72 13.66 4.53 63.74 1.47

Boot-p,i 7.09 1.55 13.41 4.96 60.26 2.55

Boot-p,i,r 7.11 1.02 13.44 4.88 60.24 1.43

Boot-p 3.90 .70 13.98 1.04 63.45 1.42

Boot-i 7.10 1.19 13.08 4.77 60.58 1.70

Boota 3.92 .70 13.77 5.02 63.77 1.43

Jackknife*3 3.93 .66 13.66 5.22 63.74 1.39

Note. Bootstrap results are based on 
aObtaining a2(p), a2(pi) and their

1000 bootstrap samples.
standards error from bootstrapping per:

and o2(i) and its standard error from bootstrapping items. Reported values 
for a2(p) and a2(pi) and their standard errors employ the correction factor n/(n-l) 
= 1.00503, and the reported value of o2(i) and its standard error employs the 
correction factor k/(k-l) = 1.05263.

^Based on the full matrix of 200 x 20 = 4000 pseudo-values.
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Approximate 80 Percent Confidence Intervals for Variance 
Components Based on Results in Table 1

TABLE 2

o2(p) = 4 o2(i) = 16 o2(pi) = 64

Simulation Resultsa (3.1, 5.0) (9.5, 22.6) (62.0, 65.97

Estimates

Satterthwaite (3.2, 5.1) (9.5, 22.6) (61.9, 65.7)

Bootstrap*5 (3.0, 4.8) (7.4, 20.6) (61.9, 65.6)

Jackknifec (3.1, 4.8) (7.0, 20.3) (62.0, 65.5)

Jackknife, log** (3.2, 4.9) O
O

• >0 25.4) (62.0, 65.6)

aReported values are the 10th and 90th percentile points of the distribution of 
each estimated variance component for 2000 random samples of size n = 200 and k =
20.

^Based on row labeled "Boot" in Table 1, with the limits of the intervals 
for o2(p) and o2(pi) multiplied by the correction factor n/(n-l) = 1.00503, and with 
the limits of the interval for a2(i) multiplied by the correction factor k/(k-l) = 
1.05263.

cBased on pseudo-values given by Equation Bl.
^Based on pseudo-values given by Equation B5.
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Bootstrap Estimates of Variance Components and Their Standard 
Errors for Binary Data Based on 100 Random Samples (Trials) of 

n - 200 Persons and k = 20 Items From a Population and Universe of Sizes
N = 2000 and K = 200, Respectively

TABLE 3

Means and SDfs Over 100 Trials with B = 100 per Trial 
Persons Items Residual

A A a A A A A

Boot Statistic °B(P> 0[a2(p)J °B(i) o[o2(i)] 0g(pi) o[a2(pi)]

P Mean •0069a .0016a .0360 .0025 . 1898a .0033a
SD .0017a .0003a .0103 .0004 .0127a .0004a

i Mean .0164 .0043 •0334b •0098b . 1901b .0121b
SD .0022 .0005 .0090b .0033b .0128b .0021b

Mean .0161 .0047 .0339 .0103 .1911° .0123c
SD .0020 .0005 .0092 .0030 - 01X 7 c .0019°

Parameters .0068 .0021 .0346 .0101 .1902 .0118

Note. An individual trial involves sampling without replacement from the population 
and universe, whereas a bootstrap sample involves sampling with replacement from the 
person and/or item vectors constituting a given trial.

aComputed estimates multiplied by the correction factor n/(n-l) = 1.00503.
^Computed estimates multiplied by the correction factor k/(k-l) = 1.05263.
cComputed estimates multiplied by the correction factor [n/(n-l)][k/(k-l)] =
1.05792.
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Estimates of Variance Components and Their Standard Errors for 
Binary Data Based on Five Random Samples (Trials) of n - 200 Persons 

and k = 20 Items From a Population and Universe of Sizes 
N = 2000 and K = 200, Respectively

TABLE 4

____Persons_____ ______Items______ ______ Residual_____
a  a

o2(p) o[cr2(p)] o2(i) o[cr2(i)] a2(pi) a[a2(pi)]

Parameters

Estimates
Traditional

Bootstrap®

Jackknife^

0068 .0021

0078 .0017
0066 .0017
0087 .0018
0094 .0018
0087 .0017

0078 .0017
0066 .0017
0086 .0017
0094 .0021
0087 .0016

,0078 .0021
0066 .0015
,0087 .0020
,0094 .0033
,0087 .0021

0346 .0101

0232 .0078
0148 .0051
0263 .0088
,0368 .0122
,0429 .0142

,0233 .0117
,0149 .0039
,0264 .0064
,0369 .0093
,0423 .0099

,0232 .0118
,0148 .0036
,0263 .0063
.0368 .0093
.0429 .0105

1902 .0118

1934 .0044
2180 .0050
2106 .0048
1971 .0045
1864 .0043

1938 .0094
2177 .0094
2106 .0096
1972 .0090
1868 .0117

,1934 .0085
,2180 .0078
,2106 .0082
,1971 .0071
,1864 .0107

aObtaining o2(p) and o[a2(p)] from bootstrapping persona, o2(i) and 
a[a(i)] from bootstrapping items, and o2(pi) and a[a2(pi)] from bootstrapping both

A A A

persons and items. Reported values for o2(p), o2(i), and o2(pi) (and their standard
errors) employ the correction factors n/(n-l) = 1.00503, k/(k-l) - 1.05263, and
[n/(n-l)][k/(k-l)] =
1.05792, respectively. (B = 1000)

^Based on the full matrix of 200 x 20 = 4000 pseudo-values.



TABLE 5

Approximate 80 Percent Confidence Intervals for 
Components for Results of the Five Trials in

Variance 
Table 4

o2(p) = .0068 o2(i) = .0346 a2(pi) - .1902

Simulation Results3 (.0043, .0096) (.0219, .0479) (.1744, .2052)

Estimates
Satterthwaite (.0061, .0105) (.0160, .0387)* (.1878, .1993)
Bootstrap (.0057, .0101)* (.0092, .0397) (.1814, .2062)*
Jackknife (.0051, .0105)* (.0082, .0383) (.1825, .2043)*
Jackknife, log (.0058, .0112) (.0120, .0685) (.1830, .2048)

Satterthwaite (.0050, .0095)* (.0101, .0251) (.2117, .2245)
Bootstrap (.0043, .0088)* (.0100, .0200) (.2048, .2291)*
Jackknife (.0047, .0085)* (.0101, .0194) (.2079, .2280)*
Jackknife, log (.0053, .0085) (.0111, .0211) (.2084, .2283)

Satterthwaite (.0068, .0118) (.0182, .0438)* (.2045, .2169)
Bootstrap (.0066, .0109)* (.0182, .0349) (.1980, .2225)*
Jackknife (.0062, .0113)* (.0181, .0344) (.2000, .2211)*
Jackknife, log (.0069, .0117) (.0197, .0375) (.2005, .2215)

Satterthwaite (.0075, .0124) (.0255, .0608) (.1914, .2031)
Bootstrap (.0069, .0124)* (.0253, .0486)* (.1853, .2084)*
Jackknife (.0051, .0136)* (.0248, .0487)* (.1880, .2062)
Jackknife, log (.0065, .0153) (.0271, .0539) (.1883, .2066)

Satterthwaite (.0069, .0115) (.0298, .0707) (.1810, .1920)
Bootstrap (.0066, .0108)* (.0288, .0551)* (.1716, .2016)*
Jackknife (.0060, .0113)* (.0294, .0563) (.1727, .2001)*
Jackknife, log (.0066, .0210) (.0321, .0613) (.1736, .2009)

aReported values are the 10th and 90th percentile points of the distribution of 
each estimated variance component for 2000 random samples (trials) of size n = 200 
and k - 20 from the population and universe sizes N = 2000 and K = 200,
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Traditional and Jackknife Estimates of Variance Components 
and Their Standard Errors for Binary Data Based on 1000 Random 

Sanples (Trials) of Size n = 200 and k = 20 From a Finite Population 
and Universe of Sizes N = 2000 and K = 200, Respectively

TABLE 6

Persons Items Interaction

o2(p) o[a2(p)] a2(i) o[a2(i)] a2(pi) a[a2(pi)]

Parameters .0068 .0021 .0346 .0101 .1902 .0118

Estimates
Traditional
Mean
SD

.0067 .0015

.0020 .0002
.0350
.0103

.0116

.0033
.1903
.0120

.0044

.0003

Jackknife
Mean
SD

.0068 .0021 

.0021 .0005
.0344
.0102

.0101

.0033
.1905
.0117

.0116

.0021

Note. Jackknife results are not based on taking the logarithms of estimated 
variance components*



Normal 
Coverage 
(Percent) 

50 

80 

90 

TABLE 7 

Confidence Interval Coverage Results for Satterthwaite 
and Jackknife Procedures for Binary Data and the 1000 

Trials Summarized in Table 6 

Actual Coverage (Percent) 
Satterthwaite Jackknife 

oz(p) o2 (i) o2 (pi) oz(p) o2 (i) o2 (pi) 

49.5 54.0 19.2 51.3 49.7 48.1 

72.4 83.9 36.8 78.9 76.4 77.2 

85.3 93.2 46.0 87.4 84.2 86.9 
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Note. Jackknife results are not based on taking logarithms of estimated variance 

components. 
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