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ABSTRACT

The purpose of this paper was to investigate various levels of item 

response dependency using principal component analyses. Item response data 

were simulated using an IRT-based dependency model which describes a two-state 

Markov process. Results indicated that when the IRT assumption of local 

independence was violated, items within a dependent sequence were clearly 

identified by their loadings on a second principal component, in addition to 

the common first principal component shared by all of the items. Under 

"realistic conditions" of local dependence, the response data retained their 

unidimensional characteristics. Concern for the effect that item dependency 

may have on ability estimation is also discussed.
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The Effect of Item Response Dependency 

on Trait or Ability Dimensionality

The assumption of local independence allows the joint probability distri*

i
bution of observing a response vector, U = (u1u 2...u^) given ability 0^ to be 

written as a product of k marginal probability functions or

K

P(U, =  U , t u 2 =  U 2 , u k  =  uk | e . )  =  . M r t U j  =  U j | e . ) |  .

A particular violation of this assumption can arise in the following way. 

Suppose that, for a k-item test, m of the items form a subset such that

P(U. — u . , U, - u », . .. , U — u , U . ■" u . j U. " u 10. )
1 i 7 2 2 m m m+1 m+1 k k' l

k
p(u, = u , 10 . )p(u, = u J o . ,  u .).,.p(u = u |e.( u .) n [p(u. = u ,10 .)] .

1 11 1 2 21 1 m m' 1 m-1 . 1 J i
j=m+l J

For example, the three geometry items pictured in Figure 1 could repre

sent the first three items on a 20-item geometry test. The joint probability

density function for an examinee with ability 0. could be written as

P(U1 - Uj, U 2 - u 2, U 3 — u 3,...U20 - u 2 oI®£) -

20
Hvl = u,|e.)p(u2 = uJe., u^PCUjle., u2) n [p(u. = u.|e.))

j=4 J

in order to account for item response dependence between items 1 and 2 and 

between items 2 and 3.

Does the joint probability density in equation (2) imply that the dimen

sionality of the space defined by the item responses as greater than one, even
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though only a scalar value of fh is assumed? To investigate this question, we 

have used a finite, two-state (0 or 1, incorrect or correct) Markov chain or 

process to model the dependence within the m-item sequence.

Let Pj(0.) represent the probability of an examinee with trait measure 

0^ answering test item j correctly, independently of any other test item.

Then define a transition matrix between any adjacent items, j-1 and j  in the 

k-item test as specified below.

0

jth-1 item

1

In this model, 0 ,.̂ represents the probability that an examinee with 

trait 0^ will move from an incorrect response on item j-1 (state 0) to a 

correct response on item j (state 1). Similarly, B.j represents a transition 

probability from a correct response on item j-1 to an incorrect response on

* * ,
item j. The probabilities, 1 - cu ̂  and 1 - 0 ^  imply state consistency 

between items.

We note that items j and j-1 are assumed to be adjacent test items only 

for the purpose of discussion in this paper. This is not a requirement, 

however, and in fact all discussion may be generalized to any two test items, 

j and j-T, where t = l,2,...,k-l and j = t+ 1 ,t+2 ,...,m.

jth item

0 1

* *
1 - a. . a. .

ij

* *
S. . 1 - B. .
ij ij
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These four cell probabilities are functions of (1) the jth item-by-ith 

person interaction, as given by P^(0^), and (2) the amount and direction of 

any item dependency. This definition of the transition probabilities is 

similar in structure to the latent Markov chain model described by Lazarsfeld 

and Henry (1968). These probabilities are defined as follows.

a. . = aP .(0.) 
ij J i

and

8tj = 6V9i>
where

Q .(0 - ) = 1 - P.(0 .) . 
j i J i

The parameters, a and 0, are weights that describe the dependency rela- 

tionship with 0 < o < 1 and 0 < 0 < 1. For the purpose of the simple examples 

provided in this paper, the weights are assumed to be constant but not neces

sarily equal to each other for all adjacent pairs of items in the m-item 

sequence. This is not required, however; within one m-item sequence, a and 0 

may take on any of the values in the range described above between any two pairs 

of items.

Once the transition probabilities have been defined, the complement 

probabilities can be written as

1 - a*. = 1 - aP.(0.)
J 1
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and

1 - 0*. = 1 - 0Q.(0.) .
ij J i

The dependency weights, a and 0, fix the amount of dependency among the m 

items, and since they can be assigned values independently of one another, 

they also fix the direction of item dependency (e.g., from correct to incor

rect). When a - 0 = 1, the items are independent, and when a = 0 = 0, the 

items are completely dependent. This is more easily seen from the definition

of the success probability for item j that results from the item dependency on

t i
previous items, or Pj(0.). P^(0.) is the probability of answering the jth

item correctly, given an incorrect response to the previous item or given a 

correct response to the previous item. In other words,

p.(e.) = q. ,(e.)o*. + p'. ,(e.){i - s*.}j 1 ^J-l 1 1J J-1 1 1 1JJ

= q! .(e.)aP.(e.) + p'. .(e.){i - 0 Q.(e.)} . (3 )
j-i 1 j 1 j-i 1 1 j 1

When o = 0 = l ,

p *(0.) = q '. .(e.)p.(e.) + p ! .(0.){1 - Q .(0.)}
j 1 ^j-i 1 j 1 j-i i 1 j 1 J

= {1 - p! t(0.)}p.(0.) + p! -(0.)p.(9 .) 
j-i 1 j 1 j-i 1 j 1

= P.(0 .) - p.(0 .)p! .(0.) + p! . ( © J P ^ O . )
j 1 j 1 j-i 1 j-i 1 j 1



This implies that the response for the jth item, given 0^, depends only on the 

jth item's ICC.

t
Similarly, when a = 0 = 0, P^(0.) = P^_^(0.) and the jth item response is 

solely determined by the previous item probability of a correct response.

That is, no characteristics of the jth item have any influence on the correct 

response for item j.

A Measure of Item Dependence

The seriousness of the effect of the violation of local independence 

depends upon several factors and the interactions of these factors. These 

include the departure of a and B from 1.0, the item characteristics (i.e., 

difficulty and discrimination) of those items within the dependent sequence, 

the order of the items (e.g., easy-to-difficulty, difficult-to-easy), and the 

length of the dependent sequence, m.

One method of evaluating the severity of the violation of local indepen

dence within a given sequence of m items is to compute the sum of the absolute 

differences between the likelihood of each of the possible 2m response pat

terns occurring under a joint density function of the Markov process or

P(U, = u , 10. )P(U, = uJ0.,u,)...P(U ~ u |0.,u .) and the local independence
1 11 i £ * 1 l 1 m m-1

m

of these m items or n

j=1
When the differences are evaluated at some value of 9 = 0Q that is 

thought to be representative of the examinee population and summed over all 

possible 2m response patterns, a measure of the departure from local inde

pendence can be computed. We have defined this value as a measure, where



® = l lP (H. = “J 8o> - p<“. “ uJ eo>l . <4>
1 = 1

2^

S t = "t leo) = M U ,  = u,,u2 = u 2,..-,Um = u j 0o)

= P(U, = u,|e0)P(U2 = u2|e0,ui)... p(um  = “J  W l *  ,

and

P^ 4 = 2 * K >  = P<U> = “ l.°2 = U2 . " - » Um *  “J«0>

m

= 1 (P<U. = u.|80 )l .
j=l J J

It can be shown that, for any given ability value, 0O , 0.0 < 9 < 2.0, 

regardless of how Pj(0Q ) is defined (e.g., one-, two-, or three-parameter 

logistic function). Obviously, when # = 0.0, local independence holds 

throughout the m-item sequence (for all values of 6 as well as 0 = 0O)«

As 9 approached 2.0, the degree to which local independence has been violated 

increases. Recall that $ is a function of a and 0, item characte r i s t i c s , 

item order, and the length of the dependent sequence, m.

Simulated Data Sets

The purpose of this investigation was to determine the effect of the 

violation of the assumption of local independence, as measured by 4, on the 

dimensionality of the item response space and to study the trait estimates 

obtained under these circumstances. Twelve data sets were generated to 

simulate 1000 examinees' responses to a 50-item test. The examinees' ability



7

distribution was assumed to be unidimensional with 8 - N(0,1). Two of the 

data sets assumed local independence and differed only on the distribution of 

item difficulty. All sets assumed that P^(8^) was a one-parameter logistic 

function of 0^. Data set #1 allowed the difficulty or b parameter to be 

normally distributed with mean, 0 and standard deivation, 1. Data set #2 

defined b to be uniformly distributed on the interval, [*.25, .25].

The inclusion of independent data sets facilitated a comparison and 

interpretation of the results of subsequent principal component analyses of 

phi coefficients on the remaining 10 dependent data sets. A one-parameter 

logistic function of 8 was chosen to minimize the effect of nonlinearity of 

the item responses on ability. Furthermore, the two separate independent data 

sets mentioned previously were compared to see if a restriction of the 50-item 

difficulty range might insure a "pure,” one-dimensional solution of the 

principal component analyses.

Table 1 gives the results of these principal component analyses in terms 

of the sizes of the first four eigenvalues. These results showed that re

stricting the item difficulty range, relative to the distribution of the 

abilities, eliminated the "second factor" or component that usually appears in 

principal component or factor analyses of item response data. Subsequently, 

all dependent data sets except one were generated with b ~ U(-.25,.25).

The ten dependent data sets ranged in the severity of the violation of 

the assumption of location independence. With the various values of a, (3 and 

m given in Table 1, the value of & was computed for 8 = 0Q = .00. Data set 

#'s 3 and 4 were considered to be cases of mild dependency; data set # fs 6 and

7 were considered to be cases of medium dependency; and set #*s 9 and 10 were 

considered strong cases. Three data sets (#'s 5, 8 and 11) combined previous 

effects to include two dependent sequences, as given in Table 1. Data set #12
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was similar to #7 except that item difficulty was assumed to be normally 

distributed, or b - N(0,1).

Results of the Principal Component Analyses: Independent Data Sets

Table 1 shows that the independent data sets (#'s 1, and 2) gave dif

ferent results in terms of the sizes of the first two eigenvalues. With the 

increased item difficulty variability in the first set, an expected difficulty 

or nonlinearity component, as reported by others (e.g., McDonald & Ahlawat, 

1974), was clearly evident. As seen in Table 2, items which had either very 

high or very low values of b loaded on this second component, C 2 . We have 

provided these results in order to (1) compare them to the results from data 

set #2 to show that we were able to eliminate or at least minimize the effect 

of the ICC curvature on the emergence of other factors and to (2) compare 

these results to those obtained when dependent sequences were embedded within 

the data sets.

By distributing the b parameter as b - U(-.25,.25), two things were 

accomplished. First, the importance of the second component due to the 

nonlinearity of P^(0^) on 0 was minimized. Secondly, the curvilinear rela

tionship between item difficulty and the loadings on the first principal 

component (i.e., the relationship between item difficulty and the point 

biserial correlation coefficient) was eliminated. This made it easier to 

interpret the effects of item response dependency in data sets #3 - #11.

Results of the Principal Component Analyses: Dependent Data Sets

Table 1 shows that for mild or medium cases of dependency (i.e.,

0 < 1.12) a much weaker second component emerged. In fact for all intents
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and purposes, these cases produced fairly unidimensional solutions. For those 

sequences where strong item dependency was present, a stronger second component 

emerged.

Tables 3, 4 and 5 give the component loadings for these remaining data 

sets. (Boldface loadings are larger, in absolute value, than .250). One of 

the first observations to be made when comparing these tables to Table 2 and 

the loadings on from data set #1, is the size of these loadings. In the 

dependent data sets, these loadings remained large or even increased in 

magnitude as $ increased. Table 6 gives the loadings for items, as they 

appeared in data set #2, that subsequently appeared in a dependent sequence. 

Most of the loadings increased as the degree of dependency increased.

The pattern of loadings on other factors when $ ^ 0 may be easiest to 

observe and describe in the cases when item dependence is greater than the 

mild cases (See Tables 4 and 5). In Table 4, for single sequences of depen

dency, a "dependency" component, although weak in the sense of the value 

of \2t did produce substantially large component loadings on C 2 for those 

items included in the sequence.

These loadings appear to have increased roughly in magnitude as the item 

appeared further from the start of the m-item sequence. When two sequences 

were included, as in data set #8, Table 4, two such "dependency components" 

emerged, although again we must state that X 2 and X3 values were not large. 

Still, all other items not in the sequences did not load on these components 

with any magnitude close to .250, and most loaded less than .10. This indi

cated that these components were associated primarily with the dependency 

effect.

The same patterns of the loadings held in cases of stronger item response 

dependency, although the magnitudes of the loadings on all factors were
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larger. These can be seen in Table 5. The identical loadings for data set 

#10 were due to the fact that a = 8 = 0; hence, there was complete dependency 

(i.e., only two response vectors were possible: (000000) or (111111)). The

same thing occurred in data set #11. Although situations where a = B = 0 are 

unrealistic, these conditions do provide maximum dependency in simulation 

work.

A final data set (#12) was included to show that this dependency compo

nent would remain distinct even when item difficulty varied. For this data 

set, b ~ N(0,1) as in set #1. The dependency parameters, a, 8 and m (and 

consequently ®) were defined as in set #7. Table 7 shows the results. The 

items in the dependent sequency continued to load on a dependency component 

(C-j) while items with extreme b values loaded once again on C 2 • Two of the 

items within the dependent sequence (#2 and #3) also loaded strongly on C 2 , 

even though their b values were not really extreme. However, the dependency 

on the first item, a very difficult one, did make the subsequent items in the 

sequence more difficult. (For other examples of the effect of item difficulty 

and order in dependent item sequences, see Ackerman and Spray, 1986).

Estimates of 6 for Dependent Sets

The second part of this investigation concerned the estimation of 0 under 

situations where the assumption of local independence did not hold. Ability 

estimates werre obtained via the computer program, LOGIST 5 (Wingersky, Barton 

& Lord, 1982) for fixed values of item parameters (i.e., a = 1.0, c = 0.0 and 

bj were 50 realizations from b ~ U(-.25,.25) as previously described). Table 

8 summarizes the estimation results in terms of bias statistics. Data set #2, 

again was the independent set. The 0^ values used to generate the data were, 

of course, known and held constant throughout the simulations.
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Table 8 shows that, in general LOGIST 5 underestimated 0 when the item 

responses violated the assumption of local independence. In addition, as the 

strength of the item response dependency increased, the maximum amount of 

underestimation as well as overestimation increased, as did the variability of 

the estimates. The largest errors in estimation were not necessarily at the 

extreme values of 0, but were scattered rather uniformly throughout the

8 range. A comparison of Figures 2 and 3, plots of 0 versus 0 for data sets 

#2 and #11 respectively, show this increase in underestimation and variance.

Summary and Conclusions

When the local independence assumption is violated, the items within the 

dependent sequency load on a second principal component, in addition to the 

common first principal component shared by all of the items. It was discov

ered that, under realistic conditions normally encountered (i.e., where the 

length of the sequence, m would be small and the degree of the departure 

of a and 8 from 1.0 would not be severe), the response data still appeared to 

have retained their assumed unidimensional characteristics.

However, the fact that only those items within a given dependent sequence 

loaded significantly on a common component or components may offer a promising 

method of discovering item dependencies. These loadings can be fairly large 

in magnitude, even in cases of mild dependency, and when coupled with the fact 

that the effect appears to be distinct from other effects normally associated 

with nonlinearity and item difficulty, there may indeed be implications here 

for the. detection of violations of local independence within a set of items.

As far as the estimation errors are concerned, these could be evaluated 

in terms of the relative number of dependent items out of the total number of
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k test items* Perhaps when m is small relative to k, the seriousness of the

A

estimation error in 0 is slight. One of our concerns is in adaptive testing 

situations where estimates of 9 might be obtained on fairly small numbers of 

items. If local independence is assumed, estimation errors could increase if 

dependent sequences were used to obtain 0 estimates on tests of fairly short 

lengths.

In our simulations of fixed-length tests, however, where' the length of 

the test was fairly long, it was encouraging to find that in cases of mild 

dependency, estimation errors were not really much worse than in the indepen

dent situation. The effects of the length of the dependent sequences, m 

relative to the total number of items, k on the estimation of 0 in both fixed- 

length and adaptive settings needs to be investigated. —
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First Pour Eigenvalues From the Principal Component Analyses

TABLE 1

Data 
Set #

* a s m x i x 2 *3

la .00 1.00 1.00 0 14.23 2.08 1.05 1.00

2b .00 1.00 1.00 0 17.22 .97 .95 .92

3 .52 .40 .60 2 17.17 1.11 .97 .95

4 .48 .60 1.00 6 17.21 1.03 1.01 .95

5 .52/.48 .40/.60 .60/1.00 2/6 17.27 1.08 1.02 1.01

6 1.12 .20 1.00 5 17.24 1.61 .95 .94

7 1.12 .20 .20 3 17.20 1.71 .97 .94

8 1.12/1.12 .20/.20 1.00/.20 5/3 17.32 1.75 1.48 .94

9 1.93 .00 .80 8 17.53 3.17 1.09 .92

10 1.94 .00 .00 6 17.67 3.56 .94 .92

11 1.94/1.93 .00/.00 .00/.80 6/8 18.21 3.80 2.82 1.03

12c 1.12 .20 .20 3 13.85 2.18 1.68 1.01

independent data set with b ~ N(0,1) 

^Independent data set with b ~ U(-.25,.25) 

cDependent data set #7 with b ~ N(0,1)
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TABLE 2

Patterns of Component Loadings > |.250j: Independent Case, Data Set #1

______ Component_______
Item # b Cj C2

36

31

34

19

17

47

43

14

•2.037

-1.941

•1.653

•1.592

-1.551

-1.515

-1.485

-.775

1

32

35

26

28

8

11

1.989

1.485

1.421

1.374

1.245

1.033

.998

,346

,400

,449

,395

,451

,445

.459

,580

326

359

357

321

302

302

300

266

,344

,464

,444

,471

,496

,512

.452

268

329

323

264

287

285

251
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TABLE 3

Patterns of Component Loadings: Mild Dependency

Component
Data 
Set #

I tem 

# C1 C2 C3 C4

3 1 .598 .617 -.033 . 180

2 .572 .661

1 .595 .408 -.033

2 .585 .523 -.047

4 3 .599 .401 .129

4 .641 .136 .422

5 .563 -.066 .526

6 .600 -.069 .297

1 .594 -.162 .342 .180

2 .584 -.188 .440 .223

3 .600 .134 .240 .299

5 4 .641 -.101 -.132 .413

5 .562 -.099 -.363 .379

6 .601 -.018 -.238 .186

30 .619 .558 .160 .090

31 .610 .566 .103 .134

Note. All remaining items not listed which were not in the dependent 
sequences loaded > j.250| on and < |.250| on all other components.
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TABLE 4

Patterns of Component Loadings: Medium Dependency

_____________________ Component______________________
Data Item
Set $ $ C 2 C 2 C3 C4

1 .610 .372

2 .626 .558

3 .619 .587

4 .629 .570

5 .573 .456

.622

.607

.606

.674

.749

.699

1 .609 -.298 .228

2 .624 -.419 .375

3 .618 -.437 .395

4 .626 -.433 .377

5 .570 -.357 .288

30 .637 .515 .419

31 .627 .568 .449

32 .628 .525 .420

Note. All remaining items not listed which were not in the dependent 
sequences loaded > |.250| on C^ and < |•2501 on ail other components.
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TABLE 5

Patterns of Component Loadings! Strong Dependency

Component
Data Item
Set # # C1 C2 c ̂ C4

1 .649 .286 .509
2 .685 .449 .444
3 .708 .531 .292
4 .705 .586 .142

9 5 .693 .627 -.101
6 .667 .645 -.235
7 .628 .644 -.321
8 .597 .603 -.356

10

1
2
3
4
5
6

.719

.719

.719

.719

.719

.719

.694

.694

.694

.694

.694

.694

1 .708 .653 .267 .016
2 .708 .653 .267 .016
3 .708 .653 .267 .016
4 .708 .653 .267 .016
5 .703 .653 .26/ .016
6 .708 .653 .267 .016

30 .642 -.240 .107 .532
11 31 .689 -.318 .243 .466

32 .691 -.418 .373 .226
33 .702 -.423 .441 .064
34 .699 -.435 .461 -.055
35 .670 -.397 .522 -.224
36 .649 -.390 .523 -.281
37 .623 -.382 .511 -.292

Note. ALL remaining items not Listed which were not in the dependent 
sequences loaded > |.250| on and > | . 2 5 0 [ on all other components.
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Cj Loadings of Items from Data Set #2 
Subsequently Included in Dependent Sequences

TABLE 6

Component:
Item #

1 .586

2 .588

3 .596

4 .616

5 .552

6 .597

7 .543

8 .573

30 .608

31 .562

32 .601

33 .592

34 .613

35 .566

36 .585

37 .514
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Table 7

Patterns of Component Loadings > |.250|: Medium Dependency with b - N(0,1)

Item

# b C 1

Component

c2 c3

( 1
1.989 .372 .501 .464

a V 2 -.078 .418 .513 .631

( >
-.730 .400 .422 .629

36 -2.037 . 341 -.298

31 -1.941 .395 -.318

34 -1.653 .446 -.310

19 -1.592 .389 -.314

17 -1.551 .447 -.281

47 -1.515 .441 -.266

43 -1.485 .457 -.281

32 1.485 .470 .292

35 1.421 .448 .263

aDependent item sequence
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Bias and Variability Statistics for Estimates of 0 (LOGIST 5)

TABLE 8

Data 
Set #

C
D1

< 
C
D

w

a (  0 )

Maximum
Overestimation Underestimation

2 -.009 .235 .865 -1.054

3 .001 .241 .945 -1.114

4 -.025 .246 .945 -1.114

5 -.029 .248 .945 -1.114

6 -.051 .257 .945 -1.365

7 -.003 .251 1.155 -1.114

8 -.051 .263 .945 -1.365

9 -.130 .280 1.155 -1.645

10 -.017 .286 1.155 -1.465

11 -.167 .325 1.155 -1.865
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E

Given: AE is parallel to BD

/  ABD = 130°

/_ EDA = 60°

/  BCD = 30°

1. What is /_ C5D?

A.

oo

B.

oovO

C. 65°

D.

ooo

Find /_ B

A. 130°

B.

o 
0

oo

C. 90

D. 85°

Find z  ead.

A. 20°

B.

O
O

C. 35°

D.

oo

Figure i. Example Test Items which Illustrate Local Dependence.
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Figure 3. 9 vs. 0 for Data Set #11.
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