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ABSTRACT

The purpose of this study was to examine the effect that large within- 

examinee item difficulty variability had on estimates of the proportion of 

consistent classification of examinees into mastery categories over two test 

administrations. The classification consistency estimate was based on a 

single test administration from an estimation procedure suggested by Subkoviak 

(1976). Analyses of both actual and simulated data revealed that the use of a 

single, overall-item difficulty estimate for an examinee's true-score, even 

when item difficulty varied greatly within an examinee, did not influence the 

estimation of the proportion of consistent classifications any more than 

homogeneous difficulty situations.





Effects of Item Difficulty Heterogeneity on the Estimation 
of True-Score and Classification Consistency

Methods of estimating the consistency of classification into two or more 

categories over two testing occasions but using information gained from only a 

single test administration have been proposed (Huynh, 1976; Marshall & Haertel, 

1975; Subkoviak, 1976). All of these methods of estimating classification 

consistency (CC) were originally conceived to be used on criterion- or domain- 

referenced tests which were tests of fairly short length (i.e., 30 items or 

less) consisting of items assumed to measure somewhat narrowly defined content 

areas. The latter assumption is frequently thought to carry with it an 

assumption of approximate equal item difficulties or item "exchangeability1* 

throughout the test for a given examinee. In fact all of the previously cited 

methods of estimating CC require this assumption.

However, tests which are not constructed to these specifications can 

still be used to classify individuals into categories. The ACT Proficiency 

Examination Program (ACT PEP) tests are of this type. These exams are de

signed to measure subject matter proficiency attained primarily outside of the 

classroom in "on-the-job" situations, such as nursing career experiences.

Exams of this type cover a number of subject matter categories that are 

related more by job performance criteria than similarity of content. Because 

of the diversity of content included, the tests also report results on more 

homogeneous subcategories of items. The ACT PEP test called Fundamentals of 

Nursing is a typical representative of such proficiency tests. It consists of 

item sets from six subject matter categories ranging in length from only 8 

items to 52 items with the average length around 20 items. The test specifi

cations require that the items within a category item set fall under the broad 

content heading but the items within a set are not thought of as exchangeable,
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in the sense that item difficulty îs expected to vary. Item sets greater than 

10 items are used to classify examinees into one of three categories; below 

minimum, minimum, and above minimum proficiency.

When estimates of the consistency of classification into the three 

categories for these sets of items were required, test-retest administrations 

were considered but rejected because of several reasons. First, the learning 

effect, even over a fairly short period of time between administrations could 

contaminate the results. A second consideration was the expense of setting up 

such a dual administration. Finally, since there were many ACT PEP tests to 

consider, no one test could be totally representative of all the exams, and 

test-retest administrations for all of the ACT PEP tests were out of the 

question.

Therefore, an approximation method based on only one test administration 

was selected, and the method chosen is one proposed by Subkoviak (1976). This 

method provided a direct procedure to test the assumption that test items for 

a given examinee must be homogeneous in difficulty in order to use certain 

true-score estimates. Using this procedure also allowed direct comparisons 

with some of the results obtained in a simulation study by Algina and Noe 

(1978), in which the authors evaluated, among other things, the effects of 

using two different estimators of examinee true-score, or item difficulty on 

CC estimation. The simulated responses in their study were generated from 

homogeneous item difficulties for examinees of the same ability for n-item 

tests (n = 5, 10 and 20), and the CC estimation followed the Subkoviak (1976) 

procedure.

The following section outlines the Subkoviak procedure for estimating the 

proportion of examinees who would be classified consistently into two or more
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categories on two test administrations, given only one test administration. 

The section provides the assumptions and definitions of the procedure.

Subkoviak1s Method of CC Estimation

The Subkoviak (1976) procedure approximates the coefficient of agreement 

or proportion of consistent classification (P£) into q categories over two 

testing occasions for each of N examinees, and then defines Pc by

P = -±- ) P * (1)
C

The ith examinee, with test-retest scores and would consistently be 

classified into q categories over 2 occasions with the use of q-1 criterion or 

cutoff scores, C p  C2, •*., Cq-i> Pc(i) X of the t*1116* where

Pc(i) “ P(Xi a Cl ’ xl a V  + P(C1 > xi 2 C2» C1 > xl * c2>

In order to estimate Pc(£)> i = •••» N and subsequently Pc, with only

one test administration, it is necessary to impose two assumptions about the
i

test yielding the scores, X^ and X^. These assumptions are that (1) test 
i

scores X^ and X. are independently distributed for each examinee and (2) X^ 
i

and X, are identically distributed random variables that follow the binomial
i
i

distribution. These two assumptions allow (2) to be written as
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P = P(X. > C.) • P(X. > C.) + P(C. > X. > C.) * P(C. > X. > c j  c(i) l l  l l  1 i 2 l i 2i
+ ... + P(X. < C ,) • P(X. < C .)i q-1 1 q-1

and

pc ( i )  = [ p ( x i *  C l ) l 2*  tP ( C l > x i S c 2 )]2 + <3 )2... + [p(x. < c .)] .1 i q-1 1

The binomial assumption provides the probability values in equation (3); for 

example,

n ,n * X. n - X.
P(X. > C.) = V lX. h . 1 (1 - O  1 (4)

1 J X. = c. 1 11 J

where, for an n-item test, person i has probability of getting each item

correct. This requires an assumption of equal item difficulty for an examinee 

for all n items.

The primary obstacle in obtaining approximations of estima

tion of the item true-score, i t . Subkoviak (1976) originally suggested two
X •

estimators of it.: (1) p^ = X^/n, the proportion of test items correctly

answered by the ith examinee and (2) p  ̂ , a linear regression estimate, given
i

by

where is the Kuder-Richardson formula 21 reliability estimate. Subkoviak

(1976) suggested that p£^ is probably better for shorter tests (e.g., n < 40
i

items) since it uses "collateral information" to supplement the estimate when
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n is small. However, he also suggested using ĉ q in place of in equation

(5) for those instances where the assumption of equal item difficulties for an

examinee may be violated. This estimator of it. is labeled in the remain-
i

der of this paper. Algina and Noe (1978) determined that p^Q performed better 

than p under many simulated testing conditions.

Estimation of tt. Under a Compound Binomial Assumption

Although the employment of p^^ makes use of the possibility that the n
i

item difficulties could be unequal, a single estimate for all item difficul

ties still must be used in equation (4). However, if it were possible to obtain 

item difficulties for each item for an examinee, * —  » j ~ •••> n> then equa

tion (4) could be written using a compound binomial expression. We can define a 

random variable, for the ith examinee and the jth item such that

1, if the item is correctly answered

0, otherwise.

A response vector, v^ for the ith examinee is

!i ° (uil- Ui2’ Uin)

with success probability vector,

t
!i = *i2’ •••’ "in5 ’
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and

n u.. 1-u. ,
P(v. 1*.) = n 1 .̂ (6)j = x . 1J iJ

Equation (6), however, is only the probability of observing one response 

vector, v., and in using equation (6) to evaluate Pc(£) in equation (3), one 

would have to evaluate (6) for all response vectors that belonged to sets S^, 

^2 » ^q-1 that = {X.|X^ > C^}, = {x^|C^ > X. >

s = {x,|x. < c .}q-1 L 1 1 1 . - q-1

n
where Y u.. = X. .

j  =  1  1 J  1

For tests of any length n, there are 2n possible response vectors, and this 

could prove to be a formidable task, even for fairly short tests.

Fortunately, Lord and Novick (1968) have provided a compound binomial 

expansion approximation for the evaluation of P(X. = x. |ir^) (see p. 525). 

Therefore, if estimates of can be obtained, it is possible to evaluate 

equation (3) from these estimates and this expansion approximation, truncated 

to some reasonable number of terms.

Logistic Estimates of it. -
ij

Estimates of tt. . can be obtained by fitting the u^ ■ responses to a 
1J J

logistic function of the form
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P(U. . = u. . = l|B 6 , X.) 
i j  i j  1 o y  l j ’ i

exp(B . + B..X,)/{l ♦ exptB . ♦ B,.X.)} (7)oj lj i 1 °J Ij 1

and obtaining estimates of 8q and Bj. Such a procedure is usually referred to

as a logistic regression analysis. Maximum likelihood procedures can be used

to estimate the coefficients 3 . and B, » for each test item and the overalloj lj
goodness-of-fit of the model usually can be checked via a likelihood-ratio 

chi-square procedure. Such an analysis is provided by the statistical comput

ing package, BMDP, by program LR (BMDP, 1983).

The logistic regression (LR) coefficients act as "pseudo-IRT11 parameters in the

sense that if the exponential term in (7) is rewritten as B,-(X. + B ./fl, .), the
lj i oj lj

coefficients estimate item difficulty and item discrimination, albeit on the raw

score scale, X, rather than on some trait scale. However, since the ultimate

goal of this estimation procedure is to estimate Pc, and since Pc is based on

raw test scores, this is not viewed as a serious problem.*’

The purpose of this study was to apply the LR procedure to item responses

from tests that were originally constructed to produce a wide range of within-

examinee item difficulty and to use these estimates of n. . to estimate P_ via7 ij c
the Subkoviak procedure modified to fit a compound binomial model. These 

estimates of P could then be compared to those obtained using p

and p£Q estimates. A secondary purpose was to simulate test data that fol

lowed the degree of item difficulty heterogeneity exhibited in the real test
A —

data and to observe the behavior of P£ as estimated using p and ?2 q* much a3 

those simulations performed by Algina and Noe (1978).
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Method - Part I

We selected an ACT PEP exam that provided the widest possible range in 

item set size, from 8 to 52 items* The total test length i» 124 items*
A «

Estimates of Pc based on p and p^Q were obtained for all six item sets for 509 

examinees. However, for purposes of this study, only the smallest (8 items) 

and the largest (52 items) sets were used for the LR analysis. This was done 

primarily because of the cost of fitting the LR to all six content sets. The 

8“ and 52-item sets were chosen in order to study the effect of set length on 

the estimates.

Observed overall proportion correct values ranged from .55 to .97 for the 

8-item set and .50 to .96 for the 52-item set. The mean difficulty and 

standard deviation, in terms of overall proportion correct values were .74 

(S.D. = .15) and .79 (S.D. - .12) for the 8- and 52-item sets, respectively.

In practice the 8-item set is considered too short to use for classifica

tion purposes, and an examinee's performance on this set only serves to help 

make an overall assignment to one of two categories, pass or fail, based on 

the total test score. For purposes of this study, we arbitrarily looked at a 

single, hypothetical cutoff score of 5 for this set. The actual cutoff scores 

of 41 and 37 were used on the 52-item set (i.e., X > 41 implied above minimum 

proficiency; 37 < X < 41 implied minimum proficiency; and X < 37 implied below 

minimum proficiency).

The two estimators, p and ?2 Q 9 were used for the 509 examinees on each 

set to estimate the CC cell probabilities from equation (3). The sum of the 

cells along the diagonal gave the estimates of Pc.

For the LR analysis, the actual item responses to the 8- and 52-item sets 

were used to fit the logistic function given by equation (7). In order to



9

obtain a wider range of test scores for the regression, we used an examinee's

total test score (out of 124 items) minus that item score being "fit" to the LR
* \model (i.e., we used a transformed test score, X. = X. - u..). This was espec-1 i ij

iaily important for the LR analysis of the smaller set, as an 8-item test

score gave a rather restricted range for the independent variable.

For each item response set, the goodness-of-fit of equation (7) was 

checked using a likelihood-ratio chi-square statistic (see BMDP, program LR, 

1983). Lack of fit was determined to be any LR analysis that produced a 

significant chi-square value of p < .05/60 or < .0008, since 60 items, in 

total, were fit. The smallest p-value from the 60 items was .004.
A A

The coefficient estimates, 0 . and 0 were then used in equation (7) to
oj i J

*obtain an LR estimate of tt. given X. . These estimates were used in thei j i
Lord and Novick (1968) approximation to the compound binomial expansion, 

truncated after 5 terms. These estimates were then used in equation (3) to 

calculate the cell probabilities as before.

Results - Part 1

Tables 1 and 2 give the results of the three different estimates of the

CC cell probabilities for the 8- and 52-item subtests, respectively. These

preliminary results indicated that, if the Pc estimates from the LR analysis

procedure were considered as the "true" parameters, then the estimates of Pc

from p and p._ (abbreviated as P and P , respectively) were not that much 20 c c
different from the results reported by Algina and Noe (1978) on test data with 

much smaller item difficulty variability. Their findings indicated that, for 

5-, 10- and 20-item tests, p^Q yielded estimates of Pc that were less biased 

than p, especially near cutoff scores close to the mean true-score of the
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test. Furthermore,, near the mean true-score, P > P > P , which occurred inc c c
the analysis of the 52-item set of the present study. As Table 1 shows, all 

three estimates of Pc were fairly close for the 8-item set, the greatest 

difference occurring between the LK estimate and the p2Q estimate (.028). The
l

greatest difference for the 52-item set was .073 (P - P ). In neither casec c
1were the differences so great as to warrant the use of tu ̂ in estimating Pc* '

However, other cutoff scores had not been investigated. Therefore, a second 

part of this study was undertaken to see which estimator, p versus p2Q> would 

perform better (i.e., have smaller bias and/or smaller variance) under condi

tions of large item difficulty variability, for a variety of cutoff scores on 

simulated responses. If neither one performed well under more varied condit

ions, this might indicate that the only way to achieve good estimates of Pc 

would be to use LR procedures on each test item.

Method - Part II

Since the results of the real data comparison seemed to indicate that the 

use of a single true-score estimate for all items might not make a difference 

in Pc estimation, we set up a data simulation to study the effect of true- 

score variability across test items on Pc estimation.

In order to simulate conditions of item difficulty or true-score varia

bility for an examinee, we first analyzed the LR coefficients estimated in j

Part I of this study. We formed a "difficulty-like" parameter, -g /S., foro 1 j
each of the 60 items (sets 8 and 52), and selected those items which yielded 

the 10 largest and 10 smallest difficulty estimates. This gave us 20 LR 

models for a 20-item test with fairly large variability in difficulty. On the 

original sample of 509 examinees, these 20 items had a mean proportion correct
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value of .73 with standard deviation of .16. Table 3 shows this item diffi

culty variability for 5 examinees. The 20 items selected are listed by their 

original item numbers (1-60). The 5 examinees were those scoring (1) the 

minimum observed total test score, 57; (2) -1 S.D. from the total test scores 

mean, X - SD, 83; (3) X, 94; (4) X + SD, 105; and (5) the maximum test score 

observed, 117. Table 3 gives each of these examinee's true probability

correct score, tt. based on the LR models, ij
A random sample of size N = 100 was drawn from the original empirical 

distribution of 509 total test scores. The sample size was chosen so that the 

unimodal shape and other characteristics of the original empirical distribu

tion would be retained in the sample. This sample of 100 scores remained 

constant throughout all replications. The sample mean was 94.7 with SD =

10.3, max (X) - 115 and min (X) = 64. The sample empirical distribution was 

also unimodal.

Using the LR models for the 20 items, it was possible to determine true- 

scores, i = 1> 2, ., 100, j = 1, 2, ..., 20 from equation (7). Then, for

a two-category classification problem, cutoff scores were varied from 9 to 19 

(i.e., 9, 10, 11, ..., 19). Using the compound binomial approximation men

tioned previously, equation (3) could then be used to give true Pc values at 

each of these cutoff scores.

Response data (0's and I’s) were generated from a uniform number generation 

subroutine (IMSL, 1985) to simulate a 20-item test for each of the 100 examinees
a  —

for each cutoff score evaluation. Then estimates, p^ and p^^ , were calculated
i

for each examinee and Pc was estimated for all 11 possible cutoff scores.



Results - Part II

The results of the estimation of P using p. and p__ are given in Table 4,c l zu ♦
X

in terms of mean deviation and standard deviation for each estimator. Again,

these results were quite similar to those of Algina and Noe (1978) for a 20-item

test. The P estimator, in general, had smaller bias but greater variabilityc
than P . The direction of the bias for P was negative over the entire cutoff c c
score range used. Algina and Noe also found that underestimated P^, but only

for cutoff scores near the mean true-score. The P estimator had its greatestc
amount of negative bias at cutoff scores near the mean true-score in both stud

ies. In the present study, however, P^ had much larger bias, over twice that 

found by Algina and Noe. In contrast, the Pc estimator had positive bias at 

cutoff scores near the mean true-score (14.6), again a similar finding to the 

previous study, but the amount of bias for P^ was smaller than that found by 

Algina and Noe.

Summary and Conclusions

The violation of the assumption of equal item difficulty in the estimation 

of CC via the Subkoviak procedure does not appear to be serious. The amount and 

direction of bias in P^ and P^ when items are not homogeneous appear to be quite 

similar to situations where the assumption is less seriously violated. When we

compare our results to those of Algina and Noe (1978), we note that the main

effect of increasing within-examinee item difficulty variability is to increase 

the size of the Pc coefficient, but only slightly. We deduce this from the

amounts of bias exhibited by P and P : P underestimated P„ for all cutoff
J C C C C

*

scores analyzed and the amount of underestimation increased, especially near
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cutoff scores close to the mean true-score, while P showed smaller overestima-c
tion in this range. The conclusion must be that the true value of Pc is slightly 

larger when item difficulty varies within examinees, but that the value of Pc
-# A

does not increase so much that estimates from P and P are inaccurate. The use --- c c
of P^ still seems to be prudent since it will usually act as a good "lower bound" 

for the true parameter value. However, Algina and Noe's suggestion of averag

ing P and P would appear to make sense in light of the findings presented in c c
Table 4. In only one instance would the average value seriously increase the 

amount of bias (see Table 4, cutoff score = 13), and in the cutoff score range 

from 14 to 17, the averaging of approximately equal amounts of positive and 

negative bias would produce fairly accurate estimates. Certainly the use of 

P^ and/or P^ is easier and less expensive in terms of time and money than fitting 

each item to an item-response function such as the logistic curve.

I
I
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Footnote

^We acknowledge that perhaps the best estimation procedure would be to

estimate n.. on a latent trait scale and then to evaluate equation (3) ij
II A

converting £ tt. ♦ 
j = i lJ

to an estimate of a number-correct true-score.
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A

CC Estimation for the 8-Item Set with X = 5.9, SD = 1.4, and — *31

TABLE 1

Estimate used: p, Pc = .790

Category

'Retest'

Test

Category

Test

Estimate

Category

Test

1 2

.680 .105

.105 .110

.777

'Retest’

1 2

.751 .112

.112 .026

Pc = .805

'Retest1

1 2

.770 .097

.097 .035

Marginals

.785

.215

Marginals

.863

.138

Marginals

.867

.132
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*

CC Estimation from the 52-Item Set with X = 41.0, SD = 6.0, and c
TABLE 2

Estimate used: p, Pc = .670

’Retest1

Category 1 2 3 Marginal

1 .470 .086 .025 .581

Test 2 .086 .074 .054 .214

3 .025 .054 .126 .205

Estimate used: p20, Pc = .597

1 Retest

Category 1 2 3 Marginal

1 .437 .118 .031 .586

Test 2 .118 .094 .053 .265

3 .031 .053 .066 .150

Estimate
A

used: LR (it-.), P_ = -660 1J c
1 Retest

Category 1 2 3 Marginal

1 .503 .109 .018 .630

Test 2 .109 .081 .043 .233

3 .018 .043 .076 .137
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TABLE 3

Examples of v..ij scores

iADkC J

for Pive Examinees in the Simulation of a 20-Item Test

Item #
Min
57

Examinee's 
X-SD 
83

Total
X
94

Test Score
X+SD
105

Max
117

4 .15 .38 .51 .64 .76
7 .89 .92 .93 .94 .95
8 .18 .45 .59 .72 .82
10 .81 .89 .91 .93 .94
14 .31 .49 .57 .64 .72
15 .20 .51 .66 .78 .87
17 .37 .48 .52 .57 .61
20 .14 .50 .68 .82 .92
25 .69 .73 .75 .76 .78
27 .84 .91 .92 .94 .95
28 .74 .82 .85 .87 .90
30 .82 .85 .87 .88 .89
31 .68 .79 .82 .85 .88
37 .81 .88 .90 .92 .93
40 .92 .95 .96 .97 .98
46 .28 .51 .61 .70 .79
53 .15 .47 .63 .77 .87
54 .86 .96 .97 .99 .99
55 .36 .50 .55 .61 .67
57 .26 .49 .59 .68 .77

MEAN .52 .67 .74 .80 .85
SD (.29) (.20) (.16) (.13) (.10)



Bias and Variability for Two Estimates of P • N = 100, n - 20

TABLE 4

Cutoff Scores
Parameter or
Estimator 9 10 11 12 13 14 15 16 17 18 19

True Pc .995 .993 .961 .899 .804 .697 .619 .619 .709 .845 .953
a

E {P„ - P } c c -.031 -.055 -.067 -.057 -.024 .036 .082 .080 .031 -.040 -.067

E <PC - Pc> -.000 -.008 -.008 -.007 -.031 -.051 -.071 -.065 -.026 -.002 -.002

a (P.)c .008 .010 .013 .015 .016 .015 .014 .015 .012 .016 .012

0 (P.) .003 .005 .012 .021 .026 .027 .022 .019 .022 .024 .011
.A

E (<*20̂ .280 .255 .278 .272 .296 .279 .283 .267 .293 .271 .287
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