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ABSTRACT

Two statistical procedures were compared in terms of their ability to 

detect significant changes in item difficulty and item discrimination from 

pretest to national test administrations. These two procedures were a 

loglinear (LL) analysis and a logistic regression (LR) procedure. The results 

of this study showed that the two procedures were able to identify two items 

from an ACT Mathematics Usage test showing unstable difficulty and 

discrimination between two administrations. Both procedures yielded similar 

results in showing stability in the remaining items, although rank, 

correlations of the results from LL and LR showed some inconsistency when 

discrimination changes were assessed, probably due to the use of fewer ability 

(score) categories in LL versus LR.





COMPARISON OF LOGLINEAR AND LOGISTIC REGRESSION 
MODELS FOR DETECTING CHANGES IN PROPORTIONS

Whenever test items are administered more than one time to samples of 

examinees that are theoretically from the same population, we should be 

concerned about sources of variation of proportion-correct values or p from 

sample to sample. One source of variation could simply be random sampling and 

if this were the case, differences in p might prove to be almost negligible or 

at least nonsignificant most of the time. On the other hand, significantly 

large differences in p might occur between testing administrations if there 

had been major changes in the item itself, such as the dropping of a popular 

foil or the rewriting or editing of the item's stem or alternatives.

These significant variations in certain item characteristics or 

parameters could have major ramifications on test construction. Usual test 

construction practice is to select items for inclusion in a test by specifying 

a target distribution for p and then to select a set of items that matches, as 

closely as possible, that target distribution. If individual item parameters 

change significantly between test administrations, the actual distributions of 

these item parameters may no longer match the target distribution.

In some applications, such as computerized adaptive testing, items are 

administered continually over some period of time. Change in item parameters 

in such situations has been termed parameter drift (Rentz, 1978). In the 

present paper, the interest is in situations where the same set of test items 

is administered twice, to two different samples of examinees. However, the 

methodology discussed within this paper can easily be extended to more than 

two administrations of the test items.

The specific situation under consideration is one in which possible 

changes in p might occur between pretest and national administrations of the 

items in the ACT Assessment Program. Item statistics obtained from pretest
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administrations are used to assemble the final forms of the tests in this 

program. Obviously, if the item statistics change significantly between 

pretest and national administrations, then the actual distribution obtained 

from the national sample could be considerably different from the target 

specifications.

Although it would be too late to remedy these flawed distributions once 

the national sample had responded, it would still be helpful to have some 

method of maintaining a certain level of quality control over the item 

selection process. Furthermore, if certain types of items tended to be more 

prone to change than other types, this information would be valuable at the 

time of test construction.

The purpose of this paper is to compare two techniques or statistical 

procedures in their ability to detect item parameter changes from pretest to 

national administrations. The term, "item parameter" is used here and 

elsewhere to describe proportion-correct values or proportion-correct values 

at certain achievement levels of the examinees (e.g., test scores). If this 

problem seems similar to the problem of item bias detection, it is probably 

because most of the item bias detection procedures that have been proposed in 

recent years could, in fact, be used in the present circumstances to detect 

differences in p between test administrations rather than between groups.

We have chosen to compare the results from two procedures, (1) loglinear 

models and (2) logistic regression analysis, in detecting item parameter

differences on different samples at pretest and national administrations. The

use of the loglinear (LL) procedure has been suggested as an item bias 

detection method by a number of authors (Kelderman, 1985; Kok, Mellenbergh, & 

Van Der Flier, 1985; Marascuilo & Slaughter, 1981; Mellenbergh, 1982;

Van Der Flier, Mellenbergh, Ader & Wijn, 1984). To our knowledge, the use of
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Che logistic regression (LR) procedure for a similar purpose has not been 

advocated. The two procedures are described in greater detail in the following 

sections of the paper.

Loglinear Models

Within the context of the present problem, if each item in an n-itern test 

is treated as a separate entity, item responses can be categorized into n,

3-way contingency tables according to three categorical variables: item

response (R) with two levels, correct and incorrect; ability (A) with k. 

levels; and test administration (T) with two levels, pretest and national.

The frequencies within each cell of a table can be analyzed using a technique 

called loglinear modeling or analysis (Bishop, Fienberg & Holland, 1975; 

Fienberg, 1977). The inclusion of the ability variable in the table allows a 

test of proportion-correct differences from pretest to national administrations 

at given levels of ability. The detection of these differences has been 

termed a test of Mnonuniform bias” or "conditional methods of bias detection" 

by Mellenbergh (1982) Van Der Flier et al. (1984) and Kok et al. (1985). 

However, because an item with good discrimination is expected to have 

differences in proportion-correct values at different ability levels, the 

differences (between pretest and national p values at given ability levels) 

are referred to here as discrimination differences.

The LL procedure consists of modeling the expected value of the log of 

the cell frequencies or proportions in terms of main, or marginal effects 

(T = test, R = response, A = ability) and interaction effects (TR = test by 

response, TA = test by ability, RA = response by ability, and TRA = test by 

response by ability). The models have an "ANOVA-1ike" appearance to them 

except that there is no random error term in the model because there is only 

one observed frequency per cell; hence, there is no "within-cell" variation.
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Another difference between ANOVA and LL models is an artificial function 

of the way in which these modeLs are typically described in the statistical 

literature. The LL analysis of cell frequencies is usually conceptualized in 

terms of comparisons of goodness-of-fit indices of a series of hierarchical 

models (with and without various interaction terms present). Although ANOVA 

can be conceptualized in an analogous fashion (e.g., Searle, 1971), the 

description in applied statistics texts is more often in terms of partitions 

of variation based on a single model. Each model for the frequency data 

yields expected counts for each cell and the goodness-of-fit statistic 

compares the expected counts with the observed counts. The most commonly used

statistics for this comparison are the Pearson chi-square statistic and the
2

likelihood-ratio chi-square statistic (abbreviated as G ). The latter is 

preferred because differences between values of this statistic for hierarchical 

models are themselves distributed as chi-square random variables (Bishop, 

Fienberg & Holland, 1975).

Another difference between ANOVA and LL models is that whereas the 

parameters of the ANOVA model are naturally additive, those for frequencies 

from a multi-way contingency table are multiplicative. Hence logarithms of 

the multiplicative parameters are taken to get an additive, linear model. A 

cell mean in an ANOVA model, for example, is the sum of parameters associated 

with each main effect and interaction. An expected cell frequency under a 

model that assumes independence in a multi-way contingency table, on the other 

hand, is a product of parameters associated with each main effect. Figure 1 

represents the design and the parameters of the LL analyses in this paper.

Note that the design pictured in Figure 1 assumes that the number of levels of 

the ability variable (A) is three (Low, Medium, High).

Referring to this figure, and recalling the product rule for probabilities
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of occurrences of independent events, it can be seen that if test, response, 

and ability are assumed to be independent,

Pijk Pi..P.j.P..k, i = 1,2; j = 1,2; k = 1,2,3,

In words, the probability of a randomly selected observation being in any 

cell ijk is the product of the three probabilities. The expected cell count 

under this model would be

m. . = Np. . = Np. p . p . ,ljk ijk i.. .j. ..k

which illustrates the multiplicative relationship mentioned previously. An 

alternative formulation of m- *. isIJK

_  » mi++ m+j+ m++k . mi++ m+j+ m++k 
mijk N N N N2

where

m... = T J m.. = Np.i++ h f' i jk i..
J k

and

m . = ) ) m. = Np .
+J+ I £ -J-

m . = ) ) m. = Np++k v h ijk . . 1  i J

Taking logarithms and letting %. . represent the log of the expected celli Jk

count gives the loglinear model,



Recall that this model assumes independence of all three categorical 

variables. The four terms in the model can be thought of as representing an 

overall effect and main effects of the three categorical variables and is 

usually written as

*ijk = 11 + PT(i) + MR(j) * UA<k>' U )

where y = -_lln(m+++)i = |ln(m.++) - y, yR(j) = jln(m+.+) - u and

yA(k) = 3^n^m++k^ ~ ^s in analysis of variance, these parameters are 

not estimable without restrictions which are

I WT(i) " I ^(j) " £ UA(k) ° ‘
1 J K

If the assumption of independence of all three variables is removed, 

additional terms are added to the model in order to account for these 

dependencies. All LL models are special cases of a general loglinear model 

(Fienberg, 1977) written as

*ijk W + yT(i) + PR(j) + MA(k) + MTR(ij) + yTA(ik)

+ yRA(jk) + yTRA(ijk)‘ (2)
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Model (2) is often referred to as the saturated modeL because it contains 

exactly as many parameters to be estimated as there are cells in the table

{i.e., [1 + (I - 1) + (J - 1) + (K - 1) + (I -1) (J - 1) + (I - 1) (K - 1) +

(J - 1) (K - 1) + (I - 1) (J - 1) (K - 1)] versus [IJKJ}; hence, there are no

degrees of freedom in (2) for tests of lack, of fit. (Degrees of freedom = #

cells - # parameters estimated).

By setting various terms in model (2) equal to zero, other models which 

fall in between the independent case of model (1) and the saturated case of 

model (2) are possible. For example, a simpler model than model (2) can be 

postulated by setting 0 and calculating a goodness-of-fit statistic for

the expected cell counts from the hypothesized model. If this statistic is 

significant at some given level, the conclusion is that the simpler model does 

not fit the data observed. The dependencies must involve all three variables 

in a significant, triple interaction term.

We denote the likelihood-ratio chi-square statistic for the test of UTDA= 0L tvA
2 . . .by If this statistic is nonsignificant, usual practice is to fit a

model without the three-way interaction but including any two-way interaction 

terms of interest. In this way, many other models are possible as long as two 

"rules'' are obeyed. First, the formulation of alternative models is limited 

to those included in "hierarchical sets in which higher-order terms may be 

included only if the related lower-order terms are included" (Fienberg, 1977, 

p. 39). An example of two models that would be included in the same 

hierarchical set would be models (3) and (4) below because

J,..=u + u + u + u + u + u (3)i jk MT yR A MTA wRA
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and

. = u + u + u + u + u + u + y (4)ijk M mT mR mA mTA mRA mTR

folLow this rule while, for example

I. . - y + y + y + y 1 j k T R RA

and

I. . = y + y + y ijk A TR

do not.

The second requirement is that terms involving fixed marginal totals must 

be included in the model being tested. Within the context of the present problem, 

the marginals are fixed for test and ability; therefore, the terms y^, y^ 

and y must be included.X A
As mentioned previously, a significance test of a postulated model is in the

form of a goodness-of-fit test via a likelihood-ratio chi-square statistic,
2

denoted by G . As each term is added to the model and the model is tested
2against the observed data, a G statistic is obtained. The difference between 

2the G statistic for this model and the previous model is then a chi-square 

statistic for a test of the significance of the added term. This procedure of 

successively fitting hierarchical models is more completely discussed by Bishop, 

Fienberg and Holland (1975) and Fienberg (1977). These sources also give methods 

for computing expected cell counts for each hypothesized model, as well as the 

constraints imposed.
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For the present problem, there are three model possibilities to consider.

The first case is given by model (3) and implies that the only terms needed to

describe both pretest and national tests, other than the fixed marginal terms

that must be added, are and pni. The former term is a function of the item's ---- R RA
overall difficulty level while the response by ability interaction models the

item's discrimination characteristics. Certainly we want yDA* 0; otherwise, theRA
item has no overall discrimination at all.

If no other terms are necessary, then model (3) describes "no change” in 

either difficulty or discrimination from pretest to national administrations 

(i.e., no terms involving T have to be added other than those required).

However, if there are changes in overall difficulty between administrations, then
2the y will have to be added, giving model (4). The difference in G statistics 1K

2between (3) and (A) or G tests the significance of the added term with degrees1K
of freedom (d.f.) equal to the difference in d.f. of the two models, or (I - 1)

(J - 1) = 1 in this case.

By adding one more term to model (A), we get the saturated model or model 

(2). If 0, then there are differences in discrimination between test

administrations. Because the saturated model (2) has zero d.f., the significance 

of vTnA is basically equivalent to the situation described previously; namely,1 tVA
if ymri* 0 and the model still doesn't fit the data, (i.e., model (4) isTR ■
significant) then a three-way interaction must be added to describe the observed

cell counts, and 0. So the test of model (4) is a test of the significanceTRA
of u . I t  is possible to have a model that describes discrimination differences TRA K
but no overall differences in p. If model (3) did not fit the data and if model (4)

2
did not fit the data, but G were not significant, then UTDA must be significant.1R 1 RA
In this situation, there would be item discrimination differences between testing 

administrations, but there would be no overall item difficulty differences. Or,
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there could exist overall item difficulty and discrimination differences between 

pretest and national samples. The hierarchical principle of LL model testing

does not require that y_ * 0 before can be tested.TR IRA

Logistic Regression 

If the expected values of the cell counts of the two levels of response, 

milk anc* were wri-tten as a ratio, ro^k/ro^k7 w^ere level 1 °f response

was correct and level 2, incorrect, then an equivalent way to write the LL 

model (2) would be as

milk
ln (shr) = {U " y> + {uT(i)' yT(i)} + yR(2)} + {uA(kf “AdO*i2k

+ {yTR(il)~ yTR(i2)J + {UTA(ik)~ MTA(ik)* + {yRA(lk)~ MRA(2k)}

+ {yTRA(ilk)~ yTRA(i2k)}

{mR(1)“ UR(2)} + {pTR(il)~ UTR(i2)} + {yRA(lk)” yRA(2k)} + 

{yTRA(ilk)” yTRA( i2k)^ *

or

m. .

ln {̂ r r } = w + ux(i)+ uA(k>+ wTA(ik> i.2k
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where

W = {UR(1)' yR(2)}>

WT(i)“ {yTR(il)" ^ T R ( i 2 ’

WA(k)_ {yRA(lk)“ yRA(2k)}'

and

WTA(ik)“ {uTRA(ilk)“ PTRA(i2k)}‘

The logarithm of the ratio, mi]_k̂ rai2k* caH ec* a logic. Fienberg 

(1977) has described logit models as the categorical response analogs to 

regression models for continuous variables. If all the variables in a LL 

analysis are fixed except for a single response variable, then logit models 

and loglinear models lead to the same, exact results. Item bias detection 

studies using logit models rather than LL models have been described by Kok et 

al. (1985), Van Der Flier et al. (1984) and Mellenbergh (1982). Logit models 

are easiest to interpret when the response variable is dichotomous.

If at least one of the fixed or explanatory variables is continuous, the 

contingency table approach will not work unless the continuous variable is 

converted to a categorical variable. Rather than force the loss of 

information and statistical power by arbitrarily categorizing a continuous 

variable, we can write the logit model as

FiIn --— } = 8 ♦ B2X.0+ B3X._, i = 1,2,..., N1 - p. o 1 ll 2 i2 3 i3



12

where

X'i = ability score for the ith examinee,

X^2 = test administration variable, a categorical variable where

+1 if examinee is in the 
pretest sample,

X--J = ability by test interaction. X. • X.„, lJ ' J ll i2
and

the ith examinee's probability of responding

correctly, given X^, X^t and X^*

This model is linear in the logit metric but nonlinear or logistic when 

written as

Model (5) is referred to as a logistic regression (LR) model, and 

estimates of the regression coefficients can be obtained through the method of

nonlinear equations.

The significance test procedures for the regression coefficients parallel 

those for the LL terms. If the observed response data fit a LR model where 

B2= B3= 0, then the resulting model is analogous to LL model (3) in that a 

single logistic curve,

(5)Pi 1 + exp{6Q+ B1Xil+ B2Xi2+ B3Xi3)

maximum likelihood estimation (MLE) from the iterative solution of a system of

exp{0 + 8,X..} o 1 ll (6)Pi 1 + exp{0 + 6.X..} o 1 1 i
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describes the probability of a correct response, given only an ability score,

X'j. No differences would be observed between pretest and national 

administrations. If there were overall item difficulty differences between 

the two tests, the B2 term would be significantly different from zero and

exp{B + B,X..+ B,X.0}
=  0  1 1 1  2 l 2  ( 7 )

Pi 1 + exp{B + B,X., + 82X.9} o 1 1l * iz

The addition of the 82 term changes the constant term, S0 for each group but 

leaves the "slope” .or steepness coefficient equal to SL for both groups (i.e., 

overall item difficulty has changed but discrimination has not). If 83 were also 

significant, the ability by test interaction would change for each test, implying 

that there were significant changes in item discrimination. This would yield 

LR model (5), analogous to the saturated LL model (2).

Significance tests of the LR model are again carried out with the use
2

of likelihood-ratio chi-square statistics, G , for goodness-of-fit tests.
2

Differences in G values of hierarchical models test the significance of the 

added term. In the LR situation, however, the degrees of freedom of the model 

tests are equal to the number of patterns observed (i.e., "cells" or 

combinations of the observed independent variables) minus the number of 

parameters or coefficients estimated.

Confidence bands around the logistic response surface can be constructed 

according to a method proposed by Hauck (1983). This method produces 

100(1 - a)% confidence statements that apply to all , i = 1,..., N; j = 1, 2, 

3 in LR model (5). Therefore, the goodness-of-fit of the model, overall, can be 

tested with the likelihood-ratio chi-square statistic, while comparisons of the 

confidence bands for for each test administration at each ability level can be 

made in a post hoc manner, similar to a Scheffe procedure.
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Method

These two procedures, LL and LR, were compared on their ability to detect 

item difficulty and discrimination changes of 40 ACT Assessment Mathematics Usage 

items between the time that each item was pretested until the items appeared in a 

final form as part of a national test administration. These 40 items had been 

pretested in 1982 on previous ACT Assessment administrations to a total of 7127 

examinees. Because mathematics items are pretested in multi-item units, it was 

possible that some of the examinees responded to more than one of the items that 

eventually comprised the 40 items selected for a national form.

A random sample of 8000 was selected from the 131,000 examinees who took a 

1984 national form of the ACT Assessment, and this became the national test 

administration sample in this comparison study.

Because items would be analyzed separately (i.e., there would be 40 separate 

LL and LR analyses to perform), we divided the national sample of 8000 into 40 

subsamples of size 200 each. This was done in order to (a) make sure that the 40 

tests or analyses would be independent and (b) to make the national samples 

similar in size to the pretest samples since pretest samples for these 40 items 

ranged from 179 to 248 (ave. = 210). Pretest sample units in which examinees 

responded to more than one item were subdivided to insure that, similar to the 

national sample, all 40 pretest samples were independent. This meant that a few 

of the pretest samples were halved or even divided into thirds to insure this 

independence.

Table 1 gives the item difficulty and discrimination parameters in terms of 

p and the biserial correlation coefficient, R. The latter is computed between 

the ACT Assessment Mathematics Usage equated scores and the test item response. 

Mean p and R values for both test administrations are listed at the bottom of 

columns 3-6. In general, according to these parameter estimates, the items on
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this 40-item test tended to become slightly easier and more discriminating on the 

final version of the test. However, these are fairly general observations based 

on item statistics that may or may not be sensitive to real item characteristic 

changes. The last column in Table 1 lists whether or not an item was modified 

between test administrations. Usually math items receive very slight 

modifications after pretesting if they receive any at all.

Because the examinees at each of the two administrations responded to the 

same item but took, different forms of the ACT Assessment, the Mathematics Usage 

equated score was used as an examinee's ability score. This equated or standard 

score ranges from 1 to 36. For the LL analyses, the 40 items were first analyzed 

using three ability levels, as pictured in Figure 1, in the BMDP4F computer 

program for multi-way contingency tables (BMDP, 1983a). To form the ability 

categories, the standard scores of the 8000 examinees from the national 

administration were put into a frequency distribution. The score at 

approximately the 33-1/3 percentile rank, was used as the first cutoff score 

(Xi < 13), scores between the 33-1/3 and 66-2/3 percentile ranks (22 > > 13)

were used to classify examinees into the Medium ability category; and scores 

above the 66-2/3 percentile rank (X^ > 22) defined the High ability category.

The LL analysis with three ability categories is abbreviated as LL3.

Two other categorizations and analyses, one with four ability categories 

(LL4) and one with five (LL5) were also performed. The percentile rank (PR) 

scores and corresponding cutoff scores for LL4 were the 25th PR, the 50th PR, and 

the 75th PR corresponding to the standard scores, 11, 19, and 24, respectively.

For the LL5 analysis, the 20th PR, 40th PR, 60th PR and 80th PR corresponding to

standard scores 10, 16, 21, and 25, were used.

As mentioned previously, tests of item difficulty changes and/or item 

discrimination changes were made via tests on the significance of the difference 
2 - -between the G statistics of various models. To test item difficulty changes, we
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tested the significance of G , _ * - G ,. v or G with one d.f. To test item(3; (4; TR
2 2

discrimination changes, we tested G or G with (k - i) d.f., where k =

3,4, or 5 ability categories.

In the logistic regression (LR) analysis, the equated math score itself was 

used as an examinee's ability score, Model (5), the fullest LR model, was

first fit to the item responses of both groups combined, using the BMDPLR 

stepwise logistic regression program (BMDP, 1983b) with independent variables 

XU , X^> and described previously. In a forced, stepwise procedure, the

removal of the and variables from the model tested the significance
2

of 6 3 and B2 via the differences in G statistics of models (5) and (7).
2 2 2

Therefore, G - G or G ^ gave a test of item difficulty changes
2 2 2

while G G (5 ) or G ^  gave a test of item discrimination changes. Both

tests had one degree of freedom.

Results and Discussion

Table 2 gives the results of the LL and LR analyses for item difficulty and
. 2 

item discrimination changes. These results are in the form of the G model

difference or model improvement statistics (hereafter referred to as
2 . V  . . . .the G -improvement statistic). The statistics for Table 2 for item difficulty

(columns 2-5 ) are all distributed as asymptotic chi-square random variables with
2 . . . . . .  t one degree of freedom. The G -improvement statistics for discrimination (columns

6-9) are all distributed as asymptotic chi-square random variables with either

one, four, three or two d.f., for LR, LL5, LL4 and LL3 procedures respectively.

It can be seen that only one test item, #28, was significantly different

on overall item difficulty from pretest to national administrations. The item

was identified by the LR and by LL5, LL4 and LL3 procedures as well. The

significance level for all tests was taken to be p < .0005, corresponding

approximately to an overall Type I error rate of .05 for 80 tests (i.e., 40

test items with tests of difficulty and discrimination changes per item).
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Similarly, only one test item, #35, showed a significant change in item 

discrimination from pretest to national administrations. Again all of the 

procedures "flagged” this test item.

To observe how consistent these findings were for all of the items,
2the G -improvement statistics for difficulty were ranked within each method 

and the ranks were correlated. Similar rankings and correlations were 

performed on the discrimination statistics. The resulting rank correlation 

matrices appear in Table 3.

The size of the correlation coefficients supported the intuitive notion 

that, as long as ability was not an issue (i.e., for tests of overall 

difficulty), all of the methods would yield approximately the same results. 

However, as soon as the ability variable became a factor, the procedures were 

no longer as consistent. Those procedures which forced the categorization of 

the "continuous" ability variable did not produce results that were strongly 

consistent with the LR procedure, one that did allow ability to be treated as 

continuous. Even the three LL procedures were not in strong agreement among 

themselves, except for LL4 and LL5.

The LR procedure leads to a graphical display of the item changes since 

LR model (5) can be plotted once estimates of B0, Blt &2, and B3 are known.

For each test administration, substitution of the appropriate value (±1) for 

and X ^ 2 yielded estimated item characteristic functions. Examples of 

these plots are shown in Figures 2 and 3 for Item #28 and #35, respectively.

It is interesting to note that although these procedures did identify 

that two items had significantly "changed” item characteristics between test 

administrations, very little, if any, modifications were done to the items 

after pretesting. Item #28 wasn't modified at all (see Table 1, column 7) and 

#35 received very slight wording changes.
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The list of alternatives was unchanged. However on the pretest unit, the 

item appeared towards the beginning while on the national form, it was towards 

the end of the test. But these were the only noticeable differences between 

the two items. And yet the item's discrimination improved drastically, as 

reinforced by Figure 3.

Conclusions

Both the LL and LR procedures consistently located those test items which 

had apparently changed in item difficulty (#28) and item discrimination (#35) 

from pretest to national test administrations. We say "apparently” because 

this was not a simulation study and we do not know with certainty that these 

two items actually did change in terms of these characteristics. From a 

production cost standpoint, the performance of the LL analyses is encouraging 

since these tests, in terms of computer costs, are less expensive than the LR 

procedure. Each LL analysis for all 40 items was approximately $7.50 in terms 

of total run costs (CPU - 13.5 sec.) while the 40 LR analyses, in total, cost 

$30.00 (CPU = 55.5 sec.).

Aside from cost, another advantage of the LL procedure, is that the LL 

models do not impose a logistic, monotonic model assumption on the responses 

as a function of ability. These models would therefore appear to handle 

nonmonotonic situations better than LR models. On the other hand, when tests 

of item discrimination differences are important, the treatment of the ability 

variable as a continuous variable measured on an interval scale rather than as 

a nominal variable might outweigh the computer cost differences, ^f the data 

did fit the logistic function well. And the use of the confidence intervals 

around each LR curve might prove to be useful at particular ability scores of 

interest. Finally, the LR procedure certainly has some similarities to an IRT 

(item response theory) approach in terms of the resulting item characteristic
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curves (ICC's) that are estimated. Some preliminary analyses have indicated 

that, on ACT Assessment Program test data, an LR analysis produces estimates
A A A

of item difficulty (“Sq/Bj) and item discrimination (Bx) that correlate 

moderate-to-high with b and a parameters from a 2-parameter logistic model 

(.95 and .59, respectively). The exact duplication of parameter estimation by 

the LR procedure may not be as important, however, as the detection of 

significant ICC differences or changes. Further studies need to be conducted 

to see if the LR and LL procedures are sensitive to such significant changes 

in ICCs from a latent trait or ability scale. Our preliminary results on real 

test data, however, were encouraging.



20

REFERENCES

Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete

multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.

BMDP (1983a). Frequency tables [Computer statistical software] Berkeley, CA: 

University of California Press (BMDP4F).

BMDP (1983b). Stepwise logistic regression [Computer statistical software] 

Berkeley, CA: University of California Press (BMDPLR).

Fienberg, S. E. (1977). The analysis of cross-classified categorical data. 

Cambridge, MA: MIT Press.

Hauck, W. W. (1983). A note on confidence bands for the logistic curve. The 

American Statistician, 37, 158-160.

Kelderman, H. (June, 1985). Item bias detection using the loglinear Rasch 

model: observed and unobserved subgroups. Paper presented at the annual

meeting of the Psychometric Society, Nashville, TN.

Kok, F. G. , Mellenbergh, G. J., & Van Der Flier, H. (1985). Detecting

experimentally induced item bias using the iterative logit method. Journal 

of Educational Measurement, 22, 295-303.

Marascuilo, L. A. & Slaughter, R. E. (1981). Statistical procedures for

identifying possible sources of item bias based on x2 statistics. Journal 

of Educational Measurement, U3, 229-248.

Mellenbergh, G. J. (1982). Contingency table models for assessing item bias. 

Journal of Educational Statistics, 7, 105-118.

Rentz, R. R. (1978, March). Monitoring the quality of an item pool calibrated 

by the Rasch model. Paper presented at the meeting of the National Council 

on Measurement in Education, Toronto, Ont.



21

Searle, S. R. (1971). Linear models. New York: Wiley.

Van Der Flier, H., Mellenbergh, G. J., Ader, H. J., & Wijn, M. (1984). An 

iterative item bias detection method. JournaL of Educational Measurement, 

21, 131-145.



22

Classical Item Difficulty and Discrimination Estimates at 
Pretest and National Test Administrations

TABLE 1

tern #
Pretest 

Sample Size P
Pretest

R P
Nat ional

R
Modi f 3 

?

1 116 .78 .53 .78 .62 No
2 113 .75 .65 .79 .60 No
3 105 .71 .54 .73 .58 Yes
4 238 .66 .45 .64 .55 No
5 90 .65 .68 .66 .65 Yes
6 227 .61 .41 .70 .55 Yes
7 216 .60 .36 .72 .53 No
8 71 .59 .59 .58 .68 Yes
9 219 .57 .58 .54 .64 Yes
10 99 .57 .57 .55 .49 Yes
11 71 .57 .43 .63 .47 Yes
12 233 .55 .46 .69 .63 Yes
13 116 .53 .57 .53 .58 No
14 195 .53 .34 .52 .50 Yes
15 231 .53 .34 .63 .48 No
16 198 .50 .46 .60 .56 Yes
17 206 .50 .37 .53 .58 Yes
18 • 205 .47 .53 .55 .64 Yes
19 202 .46 .59 .55 .6'6 Yes
20 104 .45 .62 .55 .57 No
21 70 .45 .41 .51 .57 No
22 192 .45 .39 .47 .43 No
23 89 .44 .68 .52 .67 Yes
24 199 .43 .34 .46 .52 No
25 194 .42 .37 .39 .57 Yes
26 231 .41 .41 .45 .63 Yes
27 244 .40 .38 .52 .40 Yes
28 229 .39 .46 .55 .68 No
29 214 .37 .61 .47 .70 Yes
30 225 .37 .53 .48 .66 Yes
31 248 .37 .41 .37 .52 No
32 113 .35 .51 .31 .76 Yes
33 210 .35 .34 .43 .51 No
34 229 .34 .50 .41 .57 No
35 215 .34 .32 .37 .58 Yes
36 229 .32 .44 .39 .59 No
37 232 .31 .37 .30 .55 Yes
38 227 .30 .47 .41 .64 No
39 98 .30 .47 .39 .63 Yes
40 184 .29 .69 .29 .56 No

otal 7127
ean .47 .48 .52 .58
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(D.
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Likelihood-ratio Chi-square Statistics for 
Logistic Regression and Loglinear Analyses

TABLE 2

DIFFICULTY DISCRIMINATION

LR LL5 LL4 LL3 LR LL5 LL4

0.371 0.350 0.480 0.40 0.611 2.08 0.52
0.371 0.050 0.030 0.02 0.911 3.57 1.80
0.133 0.100 0.001 0.18 0.169 2.12 1.83
0.384 0.300 0.530 0.27 3.726 10.36 4.38
1.803 2.200 1.420 3.05 0.079 8.53 7.40
3.108 2.780 2.820 3.36 6.208 8.79 6.21
8.292 8.290 8.990 9.08 0.354 7.72 9.68
3.045 2.480 3.760 3.66 1.918 4.60 2.45
0.074 0.130 0.200 0.25 0.283 3.49 5.64
2.648 2.320 2.600 1.95 2.481 6.24 2.45
0.314 0.390 0.350 0.25 0.270 6.29 3.64
2.760 2.760 2.450 3.55 1.095 2.65 2.58
0.047 0.001 0.040 0.01 1.383 1.91 0.92
0.659 0.670 0.690 1.06 3.597 7.21 3.20
1.905 2.530 1.780 1.62 1.443 2.66 2.19
6.088 5.780 4.760 4.30 2.872 8.97 9.35
0.500 1.160 0.340 0.60 2.525 8.63 5.34
0.210 0.500 0.050 0.16 0.259 3.07 0.92
1.107 0.590 0.910 1.37 0.464 6.01 7.20
0.015 0.010 0.010 0.21 0.107 1.86 2.85
1.995 1.380 1.820 1.72 1.760 1.96. 1.48
1.623 2.360 2.340 1.40 0.231 2.04 0.27
0.057 0.070 0.380 0.14 1.545 4.79 2.81
1.292 1.860 1.640 1.36 1.233 5.22 5.58
3.792 5.530 5.020 4.36 0.202 0.19 0.77
0.139 0.290 0.690 0.20 0.260 8.17 6.29
2.531 2.250 2.140 4.40 0.358 3.78 1.93
13.229 12.420 11.660 12.13 1.139 3.37 1.21
2.447 4.880 3.010 5.21 7.184 6.25 6.34
1.785 0.590 1.550 1.75 7.354 4.98 5.27
0.932 0.970 0.740 0.74 2.459 9.23 6.06
2.985 4.410 5.310 1.59 4.527 2.65 3.26
7.061 5.580 5.810 7.54 3.538 4.39 3.00
0.048 0.070 0.010 0.23 2.569 8.92 4.71
0.025 0.001 0.110 0.04 19.550 16.42 12.17
0.783 0.110 0.940 0.19 6.475 3.84 2.46
0.530 0.100 0.150 0.47 0.730 3.42 0.64
0.083 0.140 0.030 0.08 2.310 6.74 2.62
0.004 0.020 0.100 0.02 1.490 4.43 1.05
3.648 4.130 3.250 1.35 0.022 5.13 1.85

(1) (1) (1) (1) (1) (4) (3)
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2
Rank. Correlation Matrices of the G -improvement Statistics of the

LR and LL Procedures

TABLE 3

LR
Difficulty

LL5 LL4 LL3

LR 1.000
LL5 .946 1.000
LL4 .945 .927 1.000
LL3 .916 .913 .889 1.000

LR
Discrimination

LL5 LL4 LL3

LR 1.000
LL5 .435 1.000
LL4 .343 .766 1.000
LL3 .441 .429 .461 1.000
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ITEM #28
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Figure 2. LR Curves of Item #28
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Figure 3. LR Curves of Item #35
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