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ABSTRACT

Methods for predicting specific college course grades, based on small 

numbers of observations, were investigated. These methods use collateral 

information across potentially diverse institutions to obtain refined within- 

group parameter estimates. One method, referred to as pooled least squares 

with adjusted intercepts, assumes that slopes and residual variances are homo

geneous across selected colleges. The second method, referred to as Bayesian 

m-group regression, allows estimates of slopes and residual variances to vary 

across colleges, without ignoring available collateral information. These 

central prediction models were compared with the more usual procedure of 

deriving regression equations within each college considered in isolation from 

other colleges. It was found that for both models employing collateral infor

mation, a sample size of 20 resulted in a level of crossvalidated prediction 

accuracy comparable to that obtained using the within-college least squares 

procedure at colleges with 50 or more observations. The Bayesian approach 

outperformed the pooled least squares approach. It is noted that the Bayesian 

approach is highly adaptive to different structures and can thus be expected 

to outperform the other two procedures across most situations.





Through the ACT Assessment Program, postsecondary institutions can 

predict their freshmen students* grades in specific courses. Typically, 

institutions use specific course grade predictions for placement in courses

requiring varying levels of academic development. For example, students with 

low predicted chances of success in a standard freshman English course might

be advised or required to enroll in a remedial English course. On the other

hand, students with a high predicted probability of success in an accelerated 

course might be encouraged to enroll in it.

Institutions usually make placement decisions on the basis of explicit 

selection on test scores; for example, students with ACT English test scores 

less than 16 might be placed in a remedial English course. Through the ACT 

Standard Research Service (SRS), institutions can make placement decisions 

using all four ACT test scores and student's self-reported high school grades. 

Such placement decisions, based on more information, are potentially more

accurate than decisions based on single test scores.

The placement rules derived through participation in SRS are based on 

prediction equations for specific course grades using student's ACT test 

scores in English, mathematics, social studies, and natural sciences, and the 

student's self-reported high school grades in these same areas. Associated 

with each prediction equation are an estimated intercept, estimated regression 

slopes, and an estimated residual variance. The multiple correlation 

coefficient and residual variance are the standard measures used to assess the 

accuracy of the course grade predictions.

For deciding on whether to place a student in a standard level or 

remedial course, a predicted grade in the standard level course is computed.
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The predicted grade is then converted into an estimated probability of C or 

better (or of B or better). The student is placed in the standard level 

course depending on whether his or her estimated probability of success 

exceeds a predetermined threshold.

A more sophisticated approach to placement would recognize the costs of 

incorrectly placing students in the remedial course (false negative error), as 

well as those of incorrectly placing them in the standard course (false 

positive error). If false positive and false negative errors are associated 

with equal loss, and if correct decisions carry no loss, then the optimal 

decision rule would be to admit students to the standard level course when

their estimated probability of success is greater than .5. Other loss

functions, of course, would lead to different decision rules. In many 

applications, the cost of false positive and false negative errors can not be 

expected to be the same, and a more systematic, decision theoretic model is 

required to establish decision rules for placement.

In another refinement of the procedure, course grades could be 

dichotomized, based on the definition of success, and the probability of 

success modeled directly. Such procedures require nonlinear (e.g. logistic) 

regression models, and are the focus of other research being done at ACT.

In evaluating the validity of decision rules for course placement,

nontraditional validation strategies are required. The standard measures of 

association used in establishing criterion-related validity, the multiple 

correlation coefficient and the residual variance, measure the strength of the 

relationship between predictor and criterion variables, averaged across the 

range of the predictor score scales. With the assumption of multivariate 

normality, these statistics are useful in establishing the validity of
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decision rules for specific course placement (Sawyer, 1988). However, without 

an assumption of multivariate normality, these indices are largely

uninformative. In validating placement decision rules, it is perhaps

necessary, but not sufficient to describe the relationship between the

predictor variables and the.criterion variable by these traditional indices.

SRS grade predictions, are^ based on within-college least squares (WCLS) 

procedures, which use data from each institution separately, in isolation from 

the data of other institutions. Potential problems encountered in using

within-group regression equations include the presence of negative regression 

weights and a lack of adequate prediction accuracy on crossvalidation. As 

sample sizes become smaller,., these problems increase in severity. Other 

factors that could lead to .these .problems are the low reliability of specific 

course grades and extreme collinearity among the predictor variables.

The present research investigated alternative methods for predicting the 

freshman course grades of students , from their ACT scores and high school 

grades. In contrast to within-college least squares procedures, the 

alternative methods, called -.central prediction systems, use information from 

seyeral institutions, collaterally to derive a prediction equation for each 

individual institution. •

There has been research over the past 20 years (e.g., Novick, Jackson, 

Thayer, & Cole, 1972; Rubin, 1980; Braun, Jones, Rubin, & Thayer, 1983; 

Houston, 1987) on both the mathematical and empirically observed properties of 

central prediction systems. A typical finding in these studies has been that 

using collateral information from several institutions can increase both the 

prediction accuracy and the stability of estimated regression weights over
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time. Thus, central prediction systems have the potential to be useful in 

situations where small sample sizes would preclude calculating within-group 

least squares prediction equations.

Situations where ACT Assessment users frequently express a need for 

prediction equations, but where the sample sizes needed for within-group least 

squares predictions are not available, include predicting specific course 

grades, predicting overall GPAs of students enrolled in different academic

colleges of a university, and predicting overall GPAs of students with special 

background characteristics. The ability to predict specific course grades

from small data sets could greatly increase the number of institutions that

could make full use of AAP data for placement. For this reason, and because

of the need to establish priorities, the current research was limited to the 

prediction of. specific course grades. We hope to extend the research in the 

future to address the other two applications.

The two most common types of central prediction systems are Bayesian in

group regression and pooled least squares. Bayesian m-group regression uses 

the observed variability in least squares regression coefficients and residual 

variances across institutions to obtain refined estimates of the regression 

parameters for each individual institution. The refined parameter estimates 

are, roughly speaking, weighted averages of the within-group estimates and the 

estimates obtained from averaging the within-group estimates across all 

institutions. In the pooled least squares approach, the regression surfaces 

within each institution are assumed parallel, but not coincident. Under this 

assumption, estimates of the common slopes are pooled across institutions; 

intercepts are not assumed to be constant and are estimated separately for 

each institution. The assumptions of the pooled least squares approach are



- 5 -

identical to the assumptions in traditional analysis of covariance models. 

Thus, the pooled least squares approach is hereafter referred to as the ANCOVA 

approach.

Bayesian m-group regression models allow estimates of regression slopes 

and variances to vary across institutions. They use collateral information 

only to the extent appropriate; when colleges differ greatly in their 

regression structures, or as sample sizes become large, Bayesian parameter 

estimates converge to the within-group least squares estimates. Bayesian m- 

group regression brings to bear the available collateral information for the 

estimation of the regression parameters while allowing for potential 

differences to exist among groups. Because the m-group regression model does 

not commit one to rigid a priori assumptions about the similarities of the 

within-group regression structures across colleges, it is more flexible than 

the ANCOVA approach.

The ANCOVA model, in contrast, assumes that regression slopes and 

residual variances are homogeneous across institutions. To the degree that 

institutions differ in their regression slopes, the ANCOVA approach introduces 

prediction bias. To the degree that institutions differ in their residual 

variances, this approach introduces bias into the estimated probabilities 

associated with grade expectancies. On the other hand, the ANCOVA model is 

simpler to implement and operate.than the Bayesian m-group model.

The WCLS model, the Bayesian m-group regression model, and the ANCOVA 

model may be compared along a continuum. If all of the colleges were entirely 

different in their regression structures, then WCLS would likely be more 

appropriate than ANCOVA. If all the colleges were very similar in their 

•regression structures except for intercepts, then the ANCOVA model would be
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more appropriate. The Bayesian m-group regression model strikes a compromise 

between these two positions, and may be heuristically thought of as

encompassing the other two models. Bayesian m-group regression has the effect 

of regressing the within-group parameter estimates toward common values.

Unlike the ANCOVA approach, however, the extent of the regression effect is

determined by the data rather than only by assumption.

In many previous empirical studies of Bayesian m-group regression, the

colleges investigated were specially selected to be very similar in the

demographic characteristics of their students and in their curricula. The

feasibility and cost of identifying highly similar colleges would appear to 

diminish the usefulness of this methodology in routine or large-scale 

operations. The current research was designed to investigate applications 

involving small numbers of students enrolled in colleges with potentially

diverse characteristics.

The following research questions are addressed in this study:

1. Do central prediction systems permit calculating specific course 

prediction equations from samples smaller than those currently 

required? If so, how much smaller?

2. What is the preferred method of central prediction with respect to

prediction accuracy, practical feasibility, and defensibility of the

assumptions required?

Both questions were investigated empirically, using real data from diverse 

groups of colleges.
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Method

Data Source

Data for this investigation were obtained from colleges that participated 

in ACT's Standard Research Service (SRS) during the 1983-84 academic year and 

during at least one of the academic years 1984-85, 1985-86, or 1986-87.

Alternative methods were investigated for predicting grades in the following 

three specific college courses: writing/grammar, algebra, and biology.

Courses were identified from information collected by Noble and Sawyer (1987).

Colleges were selected so that the number of observations at a given 

college for a particular course was less than 100 in the 1983-84 base year and 

greater than or equal to 20 in at least one of the crossvalidation years 

(1984-85, 1985-86, or 1986-87). Including colleges with both the required and 

less than required base year sample size of 50, relative to currently 

published SRS guidelines, facilitated making a more precise evaluation of the 

potential benefits that may be realized from using collateral information. In 

order to obtain a sufficient number of colleges with less than the required 

sample size, all analyses were conducted for males and females separately. 

Colleges were selected only on the basis of available sample sizes and on our 

ability to identify the specific course.

The number of colleges available within each course group and level of 

sex, the total number of observations and the ranges of observations within 

colleges for both the base year and crossvalidation years, are presented in 

Table 1. The term "analysis group" is hereafter used to indicate a particular 

course group and level of sex. The colleges within each analysis group were 

considered to be exchangeable for the Bayesian portion of the analyses. 

Briefly, the assumption of exchangeability implies that one’s subjective



Table 1. Distribution of Institutional Sample Sizes, by Course and Sex

Course Sex
Number of 

institutions

Base 
number of

year
students

Crossvalidation year 
number of students

Min. Med . Max
Total, all 

. institutions Min . Med. Max.
Total, all 
institutions

Writing/grammar Male 17 14 52 88 938 32 75 226 1278
Writing/grammar Female 16 15 60 99 915 30 98 346 1582

Algebra Male 13 20 55 90 682 20 73 184 948
Algebra Female 11 33 60 98 696 38 85 193 940

Biology Male 15 13 50 97 764 23 68 184 1016
Biology Female 16 10 41 99 812 33 78 268 1250
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judgements about the within-college regression parameters are the same for all 

colleges. See Lindley (1971) for a discussion of this concept.

Procedure

Two different prediction equations were studied: an eight-variable

equation based on the four ACT subtests and the four high school grades, and a 

two-variable equation based on,.the ACT Composite and high school grade point 

average. For each prediction equation, regression coefficients and residual 

variances were estimated using three different models: within-college least

squares (WCLS), pooled least squares with adjusted intercepts (ANCOVA), and 

empirical Bayesian m-group regression.

The specific Bayesian m-group regression model used in this study (Wang, 

1988), is an extension of an empirical Bayesian model developed by Rubin 

(1980) and Braun, Jones, Rubin, and Thayer (1983). In all of these models, 

data are used to estimate hyperparameters of a common prior distribution on 

the within-college regression coefficients (intercept and slopes). The model 

in this study (denoted BAYES) differs from the previous empirical m-group 

regression models in its treatment of the within-group error variances. In 

the BAYES model, data-based estimates are obtained for the degrees of freedom 

and scale parameter of the inverse chi-square prior distribution for the 

exchangeable within-group error variances. Point estimates of the within- 

group regression parameters are taken to be the modes of the posterior 

distributions. The model developed by Rubin (1980) and Braun, et al. (1983) 

uses joint maximum liklihood estimates for the within-group error variances. 

The BAYES model used in this study has an empirically determined informative 

prior distribution on the within-group error variances and, therefore, 

regresses estimates of within-group error variances toward common values. No
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comparable regression of within-group error variances occurs in the model used 

by Rubin (1980) and Braun, et al. (1983). More accurate estimation of 

residual variances is important because it permits more accurate estimation of 

the probability of course success. The WCLS, ANCOVA, and BAYES models are 

described in greater detail by Houston (1987).

Both theoretical considerations and the empirically derived results to 

date suggest that using collateral information across groups effectively 

increases within-group sample sizes. However, shifts over time in the 

population and/or changes in grading standards tend to decrease prediction 

accuracy, regardless of the method and sample sizes used to derive base year 

prediction equations. Therefore, all prediction equations were cross

validated .

Data from the 1983-84 base year were used to calculate prediction weights 

for each of the combinations of number of predictor variables and three 

estimation models. The prediction equations for each institution were then 

used to predict the specific course grades of students at the same institution 

in the 1984-85, 1985-86, or 1986-87 crossvalidation year. Where adequate

sample sizes were available in more than one crossvalidation year, data from 

the latest year were used. Indices of predictive accuracy utilized in the 

crossvalidation analyses include mean squared error (MSE), mean absolute error 

(MAE), zero-order correlation between predicted and obtained course grades 

(R), and prediction bias (BIAS). Colleges were grouped according to base year 

sample sizes (<50 and >50), and the distributions of crossvalidation indices 

were summarized across institutions.
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Results

For the eight-variable prediction equation, the WCLS model produced a

large number of negative weights. The percentages of negative regression 

slopes across colleges and variables and within analysis groups ranged from

29% (biology-female) to 38% (writing/grammar-male; algebra-male).

For three of the six analysis groups, the eight-variable ANCOVA model

eliminated all of the negative regression slopes. For the remaining three

analysis groups, pooled estimates of the regression slopes associated with one 

or more of the predictor variables were negative. A negative weight was 

associated with the ACT Natural Sciences subtest in all three of these groups.

The BAYES eight-variable prediction model failed to eliminate one or more 

of the negative regression slopes in all six analysis groups. In those 

analysis groups in which the pooled estimates obtained under .the ANCOVA model

were all positive, however, the BAYES model eliminated a substantial portion

of the negative weights obtained with the WCLS model.

For the two-variable prediction equation, negative regression slopes

obtained under the WCLS model were present in 4 of the 6 analysis groups. For 

these A analysis groups, the percentage of negative slopes across colleges and 

variables ranged from 3% (biology-male) to 15% (grammar/writing-male). For 

all 6 analysis groups, both the BAYES and ANCOVA two-variable models 

eliminated all of the negative regression weights.

Table 2 reports the means and standard deviations, across colleges within 

analysis groups, of the estimates of within-college error variances for two 

and eight predictor variables and for the three estimation models. For the 

eight-variable equation in the writing/grammar-males analysis group, the 

arithmetic mean across colleges of the maximum likelihood estimates of the

- 11 -
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Table 2. Means (Standard Deviations) of Base Year 
Residual Variances Across Colleges

Course Sex

Number of 
predictor 
variables

Prediction model 

WCLSb ANCOVAc BAYESd

Writing/grammar Male 8 ,59(.26) .73(.00) .68(.14)
2 .74(.28) .75(.00) .74(.14)

Female 8 • 51(.17) .69(.00) .63(.10)
2 .66(.17) .71(.00) .67(.08)

Algebra Male 8 .82(.30) 1.12(.00) 1.02(.08)
2 1.12(.25) 1.22(.00) 1.21(.00)

Female 8 - 92(.31) l.ll(.OO) .99(.15)
2 1.10(.33) 1.14(.00) i.ii(.io)

Biology Male 8 .73(.20) .87(.00) .84(.00)
2 .88(.21) .88(.00) .88(.00)

Female 8 .52(.29) .79(.00) .73(.07)
2 .67(.20) .80(.00) .78(.04)

aQuantities in parentheses are standard deviations across colleges.

Within-college estimates are maximum likelihood estimates.

c
Maximum likelihood estimates under the assumption that error variances are 
homogeneous across colleges within analysis groups.

^Within-college estimates are the modes of the marginal posterior distribu

tions (x ^).



within-college error variances obtained from the WCLS model is .59. The 

standard deviation, across colleges, of these estimates is .26. The ANCOVA 

model assumes that residual variances are homogeneous across colleges; under 

the assumption of homogeneity, the maximum likelihood estimate of the common 

within-college residual variance is .73. The BAYES model estimates the 

within-college error variances as the modes of the marginal posterior 

distributions on the error variances. The average of these Bayesian point 

estimates, across colleges, is .68. Their standard deviation, across 

colleges, is .14.

Note in Table 2 that for each analysis group, the BAYES model has sub

stantially regressed the estimates of within-college error variances toward 

common values. The extent of the regression effect is reflected in the 

reduction in standard deviations between the WCLS and BAYES models. In three 

cases (algebra-male-2 variable; biology-male-8 variable; and b.iology-male-2 

variable), the BAYES model regressed the estimates of within-college error 

variances virtually to a constant. For other analysis groups, the regression 

effect was more moderate.

The results of the crossvalidation analyses for each analysis group and 

prediction equation are reported in Appendix A. The tables there give the 

medians, across colleges within analysis groups, of the following cross- 

validation statistics: mean squared error (MSE), mean absolute error (MAE),

zero-order correlation between predicted and observed course grades (R), and 

prediction bias (BIAS). Results are provided separately for the two-variable 

and eight-variable prediction equations, for the three different estimation 

models (WCLS, ANCOVA, and BAYES), and for colleges with different base year

- 13 -
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sample sizes (less than 50 and 50 or more). Results are also given for all 

colleges in each analysis group.

With the eight-variable WCLS prediction equations currently used in the 

ACT Standard Research Service, prediction accuracy is severely reduced when 

base year sample sizes are less than 50 (Sawyer, 1987). A striking example of 

this property of WCLS predictions is shown in Table A.l, where the median MSE 

across the 8 colleges with' base year sample sizes less than 50 is 1.36, as 

compared to a median MSE of .69 for colleges with base year sample sizes 

greater than or equal to 50.

Under the WCLS model, the two-variable prediction equations were more 

accurate on crossvalidation than the eight-variable prediction equations for 

every analysis group. Pooled across base year sample sizes and averaged 

across analysis groups, the median MSE obtained for the two-variable 

prediction equations was 14% less than the median MSE obtained for the eight- 

variable equations. Under the ANCOVA and BAYES central prediction models, 

only very small differences between the two-variable and the eight-variable 

prediction equations in prediction accuracy on crossvalidation were found. 

For both central prediction models, the median MSE obtained for the two- 

variable prediction equations was about 1% less than that obtained for the 

eight-variable equations.

The comparisons of greatest interest in this study concern the prediction 

accuracy associated with the central prediction models at colleges with fewer 

than 50 observations in the base year. Table 3 reports differences between 

the median MSEs for prediction models at colleges with fewer than 50 base year 

observations and the corresponding median WCLS MSEs at colleges with 50 or 

more base year observations. These differences are given for each course and
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Table 3. Difference Between Median MSE for Prediction Models at 
Institutions With Fewer Than 50 Base Year Observations 
and Median MSE for WCLS Model at Institutions With 50 
or More Base Year Observations, Averaged Across Sexes

Number of ________ Prediction model_______
Course______________predictor variables________ WCLS________ ANCOVA________ BAYES

Writing/grammar 8 .58 .08 .02.
2 .25 .11 .06

Algebra 8 .86 .15 .13
2 .37 .24 .14

Biology 8 . 36 -.16 -.18
2 -.01 -.09 -.09
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number of predictor variables, averaged across sexes. Negative differences in 

Table 3 reflect- smaller MSE (greater prediction accuracy) for the prediction 

models relative to the WCLS model at colleges with large base year sample 

sizes; positive quantities reflect larger MSE (lesser prediction accuracy). 

For example, the median MSE for males among the 8 colleges with base year 

sample sizes less than 50 was .68 under the BAYES model (Table A.l). The 

median MSE among the 9 colleges with base year sample sizes of 50 or more was 

.69 under the WCLS model. Thus, the relevant calculation is .68-.69 = -.01. 

From Table A.3, a similar calculation for females is .71 - ,66 = .05. The 

average of these two differences is .02, as reported in Table 3.

The results in Table 3 indicate that for writing/grammar and algebra, the 

use of the central prediction models at colleges with fewer than 50 base year 

observations resulted in only modestly decreased prediction accuracy, as 

compared to the prediction accuracy associated with the WCLS model at colleges 

with 50 or more base year observations. For biology, the central prediction 

models at institutions with small base year sample sizes actually had greater 

prediction accuracy than did the WCLS model at institutions with large base 

year sample sizes.

It is also useful to state these results as proportionate changes in MSE, 

relative to the median MSE associated with the WCLS model at colleges with 50 

or more base year observations. For writing/grammar, the increases in median 

MSE associated with the BAYES model at institutions with small base year 

sample sizes were 3% (eight-variable prediction equation) and 9% (two-variable 

prediction equation). For the ANCOVA model, the corresponding increases in 

MSE were 11% (eight-variable prediction equation) and 17% (two-variable 

prediction equation). For algebra, the increases in MSE associated with the
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BAYES model were 10% (eight-variable) and 11% (two-variable) and the increases 

associated with the ANCOVA model were 12% (eight-variable) and 19% (two- 

variable). Using the central prediction models at colleges with fewer than 50 

base year observations actually decreased median MSE for biology; for the 

BAYES model, the decreases were 16% (eight-variable) and 8% (two-variable) and 

for the ANCOVA model, they were 15% (eight-variable) and 8% (two-variable).

These same trends were found for mean absolute error (MAE) as well.

Averaged across analysis groups and prediction equations, using the BAYES 

model at institutions with fewer than 50 base year observations decreased the 

correlation between predicted and obtained course grades by 8% relative to the 

median correlation using the WCLS model at institutions with 50 or more base 

year observations. The corresponding decrease in crossvalidated correlation 

using the ANCOVA model was 12%.

We sought to determine minimum within-course sample sizes that would be 

feasible using the BAYES model in terms of comparable prediction accuracy 

relative to that obtained using the WCLS model with current base year sample 

size requirements. To do this, we plotted MSE for the eight-variable predic

tion equation against base year sample size for the WCLS and BAYES models.

(These plots, for each analysis group, are presented in Appendix B.) We then 

fit a curve to the scatterplot for each prediction model using least squares 

criteria.

For all 6 analysis groups, logarithmic regression curves adequately 

summarized the relationship between crossvalidated MSE and base year sample 

size for the WCLS model. For 3 analysis groups, logarithmic regression curves 

were also adequate in summarizing the relationship between MSE and base year 

sample size for the BAYES model. However, for the analysis groups grammar/
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writing-male, biology-male, and biology-female, the relationship between MSE 

and base year sample size among the data was described more effectively by a 

straight line.

The plots in Appendix B indicate that the BAYES model permits calculating 

specific course prediction equations from smaller sample sizes than does the 

WCLS model. For example, in Figure B.l the ordinate of the WCLS curve 

corresponding to a sample size of 50 is approximately 0.9. The Bayes line 

lies below this level for all sample sizes. We are not claiming that the 

relationship between BAYES MSE and base year sample size is linear everywhere; 

clearly, the BAYES line will at some point start to increase as base year 

sample size decreases. The curves in Figure 1 do suggest, however, that BAYES 

MSE will be less than WCLS MSE at small sample sizes.

Notwithstanding considerations of prediction accuracy, the WCLS model 

requires that the number of within-group observations be greater than the 

number of predictor variables; otherwise, the parameter estimates are not 

uniquely determined. (This requirement corresponds to positive degrees of 

freedom for error.) As noted by Braun, Jones, Rubin, and Thayer (1983), 

empirical Bayesian models can, in principle, be used even when the within- 

group data are of deficient rank. Although the plots for 2 courses 

(writing/grammar and biology) suggest the possibility that adequate prediction 

accuracy might be obtained for colleges with data of deficient rank, we do not 

recommend permitting sample sizes to be this low. Figures B.3 and B.4, 

corresponding to the analysis groups algebra-male and algebra-female, suggest 

that a base year sample size requirement of 20 would result in a reasonable 

level of accuracy, relative to that obtained using the WCLS model with the
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current sample size requirement. A similar sample size requirement was found 

for the ANCOVA model, as well.

Conclusion

The effectiveness of central prediction models in eliminating the 

negative slopes frequently obtained under the WCLS model depends upon the 

number of predictor variables. The results for the eight-variable prediction 

equations suggest that neither central prediction model investigated will 

eliminate all of the negative regression slopes when there are large numbers 

of correlated predictor variables, though the ANCOVA model seems to be some

what more effective than the BAYES model in this regard. For the two- 

variable prediction equations, however, both central prediction models 

eliminated all of the negative regression slopes in every analysis group.

Under the WCLS model, the two-variable prediction equations were found to 

be more accurate on crossvalidation than the eight-variable equations. For 

the central prediction models, on the other hand, the prediction accuracy 

obtained for the two-variable and eight-variable equations were essentially 

the same.

The results of this research are consistent with previous findings that 

central prediction models permit calculating prediction equations from fewer 

observations than are required with standard least squares methods. Only a 

slight reduction in prediction accuracy was found, relative to that obtained 

using the WCLS model with the current sample size requirement of 50. Averaged 

across analysis groups and number of predictor variables, using the BAYES 

model at institutions with less than 50 base year observations resulted in a 

1.5% increase in MSE relative to the MSE obtained using the WCLS model at
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colleges with 50 or more base year observations. The corresponding increase 

in MSE for the ANCOVA model was 6%. Our analysis indicates that under either 

the BAYES or ANCOVA models, a base year sample of 20 observations would result 

in a level of accuracy comparable to' that obtained using current procedures.

The BAYES and ANCOVA central prediction models achieved comparable levels 

of prediction accuracy, with the BAYES model slightly outperforming the ANCOVA 

model. This result'is consistent' with results for predicting freshman GPA, as 

reported by Houston (1987).'

We have demonstrated that'both central prediction models are practically 

feasible. All of the prediction models investigated (WCLS,'BAYES, and ANCOVA) 

require calculating a sum of squares and cross products matrix of the 

predictor and criterion'-variables within each group. Given that the' elements 

of these matrices have been- calculated, the additional cost of using the 

central prediction models is small.

Moreover, the ANCOVA model makes the assumptions that the within-group 

regression surfaces are parallel and that the residual variances about each 

regression surface are homogeneous across groups. To the extent that colleges 

are carefully selected for inclusion into the central prediction system, the 

assumptions required by the ANCOVA model may be 'defensible. However, in large 

scale operations, a careful matching of colleges based on similarities in 

curricula and demographic characteristics of their students is not feasible.

Bayesian m-group regression models assume that the colleges are exchange

able, i.e., subjective a priori judgments about the within-college regression 

parameters are the same for all colleges in the system. The defining charac

teristics that colleges must possess in order to be considered exchangeable 

should, of course, be modified and extended, as warranted by experience.
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Because the Bayesian approach is highly adaptive to different regression 

structures, practically feasible and theoretically defensible, and slightly 

more accurate on crossvalidation than the pooled least squares approach, we 

believe the m-group regression model is preferable.
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Appendix A

Crossvalidation Statistics for the WCLS, ANCOVA, and BAYES 

Prediction Models, by Course Group, Sex, and Number of Predictors
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Table A.I. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Writing/Grammar
Sex: Male
Number of predictors: 8

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or,

D
5U more

All
institutions

WCLS MSE 1.36 .69 1.03
MAE .94 .66 .81
R .21 .37 .34
BIAS - .11 - .13 - .12

ANCOVA MSE .75 .69 .72
MAE .68 .65 .67
R .44 .47 .46
BIAS - .08 - .16 - .10

BAYES MSE .68 .66 .66
MAE .65 .63 .64
R .46 .47 .47
BIAS - ,08 - .13 - .09

8 institutions

k 9 institutions
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Table A.2. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Writing/Grammar
Sex: Male
Number of predictors: 2

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or, 

50 more
All

institutions

WCLS MSE .90 .70 .86
MAE .76 .64 .73
R .27 .43 .40
BIAS -.18 -.20 -.20

ANCOVA MSE .78 .70 .77
MAE .70 .64 .69
R .44 .45 .45
BIAS -.10 -.18 -.10

BAYES MSE .72 .68 .68
MAE .66 .62 .63
R .44 .45 .45
BIAS -.14 -.15 -.14

8 institutions

9 institutions
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Table A.3. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Writing/Grammar
Sex: Female
Number of predictors: 8

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or, 

50 more
All

institutions

WCLS MSE 1.15 .66 .81
MAE .87 .65 .70
R .24- .50 .43
BIAS .26 -.00 .01

ANCOVA MSE .75 .61 .66
MAE .66 .62 .64
R .29 .59 .53
BIAS .01 .06 .03

BAYES MSE .71 .61 . 66
MAE . 65 .62 .63
R .31 .58 .54
BIAS - .02 .01 .00

a r •5 institutions

11 institutions
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Table A.A. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Writing/Grammar
Sex: Female
Number of predictors: 2

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or,

rrî  D
dU more

All
institutions

WCLS MSE .87 .58 .64
MAE .73 .62 .64
R .31 .58 .48
BIAS -.06 .06 .02

ANCOVA MSE .71 .58 .66
MAE .67 .62 . 65
R .30 .58 .50
BIAS .01 .03 .02

BAYES MSE .67 .57 .64
MAE .66 .60 .63
R .33 .59 .53
BIAS .01 .04 .03

5 institutions

b ,, .
11 institutions
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Table A. 5. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Algebra
Sex: Male
Number of predictors: 8

Prediction
model

Crossvalidation
statistic

Base year sample size
Less than 50 or. 

rna D 
50 more

All
institutions

WCLS MSE 2.34 1.37 1.65
MAE 1.16 .96 1.08
R .21 .47 .33
BIAS - .03 .07 .06

ANCOVA MSE 1.42 1.24 1.37
MAE .96 .93 .94
R .44 .50 .48
BIAS .11 - .00 - .00

BAYES MSE 1.41 1.21 1.34
MAE .94 ,90 .91
R .44 .53 .47
BIAS .05 - .05 - .04

7 institutions
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Table A.6. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Algebra
Sex: Male
Number of predictors: 2

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or,

rn3 D50 more
All

institutions

WCLS MSE 1.72 1.31 1.40'
MAE 1.06 .92 1.00
R .35 .48 .44
BIAS - .05 - .07 - .07

ANCOVA MSE 1.51 1.25 1.34
MAE 1.02 .93 .97 '
R .43 .47 .44
BIAS .02 - .05 .01

BAYES MSE 1.38 1.20 1.31
MAE .98 .90 .95
R .45 .48 .46
BIAS .01 - .12 .00

3 6 institutions

k 7 institutions
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Table A.7. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Algebra
Sex: Female
Number of predictors: 8

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or*

cna b
50 more

All
institutions

WCLS MSE 1.93 1.19 1.33
MAE 1.09 .87 .91
R .32 .51 .35
BIAS - .45 .03 - .02

ANCOVA MSE 1.44 1.17 1.18
MAE 1.01 .83 .88
R .37 .53 .50
BIAS - .32 .09 .01

BAYES MSE 1.40 1.13 1.16
MAE .99 .84 .88
R .39 .56 .52
BIAS - .27 .09 - .02

5 institutions

k 6 institutions
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Table A.8. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Algebra
Sex: Female
Number of predictors: 2

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or, 

50 more
All

institutions

WCLS MSE 1.52 1.19 1.21
MAE 1.04 .88 .89
R .38 .53 .52
BIAS - .34 .08 .01

ANCOVA MSE 1.46 1.18 1.21
MAE 1.03 .86 .91
R . 36 .57 .53
BIAS - .33 .09 .04

BAYES MSE 1.39 1.17 1.18
MAE .98 .84 .87

R .43 .57 .53
BIAS - .21 .09 - .07

5 institutions

k 6 institutions
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Table A,9. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Biology
Sex: Male
Number of predictors: 8

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or, 

50 more
All

institutions

WCLS MSE 1.62 1.17 1.18
MAE 1.03 .83 .88
R .38 .50 .45
BIAS . 17 .20 .20

ANCOVA MSE .93 1.12 1.12
MAE .76 .82 .81
R .44 .51 .50
BIAS .14 .12 .12

BAYES MSE .90 1.03 1.02
MAE .72 .80 .80
R .44 .54 .54
BIAS .02 .20 .11

a 6 institutions

9 institutions
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Table A.10. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Biology
Sex: Male
Number of predictors: 2

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or,

rr\3 D
50 more

All
institutions

WCLS MSE 1.00 1.07 1.07
MAE .81 .83 .83
R .42 .53 .49
BIAS .06 .11 .11

ANCOVA MSE .92 1.02 .99
MAE .78 .81 .81
R .44 .53 .52
BIAS .14 .10 .11

BAYES MSE .93 .99 .99
MAE .75 .80 .80
R .44 .54 .53
BIAS .02 .18 .07

3 6 institutions

9 institutions
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Table A.11. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Biology
Sex: Female
Number of predictors: 8

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or,

rrv3 D
dU more

All
institutions

WCLS MSE 1.26 1.00 1.07
MAE .96 .79 .83
R .42 .54 .53
BIAS .17 - .00 .07

ANCOVA MSE .92 .90 .91
MAE .83 .76 .80
R .65 .59 .59
BIAS .15 .01 .08

BAYES MSE .91 .90 .89
MAE .78 .76 .79
R .68 .61 .62
BIAS .05 - .00 .03

9 institutions

7 institutions
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Table A.12. Medians, Across Institutions, of Crossvalidation Statistics 
Course: Biology
Sex: Female
Number of predictors: 2

Prediction
model

Crossvalidation
statistic

Base year sample size 
Less than 50 or,

r r v 3  D50 more
All

institutions

WCLS MSE .96 .92 .93
MAE .80 .77 .78
R .59 . 61 .60
BIAS .14 -.01 .08

ANCOVA MSE .90 .90 .90
MAE .77 .76 .77
R .68 .61 .61
BIAS . 16 .01 .08

BAYES MSE .89 .88 .88
MAE .79 .74 .78 '
R .68 .62 .62
BIAS .00 -.01 -.00

9 institutions

k 7 institutions
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Appendix B

Plots of Crossvalidated Mean Squared Error Against Base Year 

Sample Size for the WCLS and BAYES Models, 

by Course Group and Sex 

(Eight-Variable Prediction Equation)
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Figure B.1 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.

(Analysis Group: Writing/Grammar-Male)
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Figure B.2 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Writing/Grammar-Female)
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Figure B.3 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Algebra-Male)
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Figure B.4 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Algebra-Female)
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Figure B.5 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Biology-Male)
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Figure B.6 Crossvalidated MSE for WCLS and BAYES Models by Base Year Sample Size.
(Analysis Group: Biology-Female)
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