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Abstract

A popular method of analyzing test items for differential item functioning (DIF) is 

to compute a statistic that conditions samples of examinees from different populations on 

an estimate of ability. This conditioning or matching by ability is intended to produce an 

appropriate statistic that is sensitive to true differences in item functioning, provided the 

ability estimate accurately reflects a comparable level of the true ability for these 

populations. If the observed or number-correct score is used as a conditioning or 

grouping variable, a problem exists whenever examinees from two different populations 

are matched on the same level of the observed test score, but actually have quite 

different levels of the unobserved ability. This occurs whenever the distributions of true 

abilities for the populations of interest are incongruent or non-overlapping. This 

situation was investigated in a series of computer simulations. The results indicated that 

the magnitude of the problem, in terms of being able to detect true DIF with moderate 

sample sizes when ability distributions are incongruent, may not be that serious for tests 

which are, on average, free from DIF.
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Performance o f the M antel-Haenszel Statistic and the Standardized Difference in

Proportions Correct When Population Ability D istributions Are Incongruent

Two statistics that are used to indicate differential item functioning (DIF) 

between two populations of examinees are the Mantel-Haenszel common-odds ratio 

(MH) (or equivalently the Mantel-Haenszel negative log-odds ratio) (Holland & Thayer, 

1986) and the standardized difference (STD) in proportions correct (Dorans & Kulick, 

1986). Both statistics condition on some ability measure, usually the observed score of 

the test containing the items undergoing the DIF analysis. Conditioning on the 

observed test score in order to evaluate population differences in item proportion correct 

would appear to be appropriate provided the matching observed test score accurately 

reflects a comparable level of the measured trait for the populations of interest.

However, problems arise whenever identical values of the observed test score, X , 

represent different levels of ability across groups. This can occur when the conditional 

distributions of ability given observed score are different for the comparison groups used 

in the DIF analysis.

Zwick (1990) has discussed the implications of this problem within a theoretical 

context. The purpose of the current paper is to present a more applied analysis of this 

problem and to attempt to determine how severe the situation must be before a DIF 

analysis that employs the MH or STD statistic leads to erroneous conclusions.



Definitions of the DIF Statistics

The definitions of the estimator of the standardized difference in proportions i

correct (STD) and the Mantel-Haenszel common-odds ratio estimator (M H) are given as 

follows.

If the two populations of examinees are labeled as a focal group (F) and a base 

group (5), and s indexes each observed score category of a k- item test, or s = 0, 1, ..., k , 

then
A/p -  the number of examinees in the F  group at score 5,

N b -  the number of examinees in the B group at score s ,

Ns -  the number of examinees in F and B at score 5 ,

k

Gr -  Np /  re s tiv e  frequency of F at 5 ,
s - Q

k

Gb -  , the relative frequency of B at .v, and
S s - 0  S 

k

Gs-  /Vs /  ^2  the tota  ̂ relative frequency of F and B at s.
s - 0

If RP and Rn are the numbers of examinees (i.e., absolute frequency), in F  and B
1 s  s

respectively, at s who answer the item of interest correctly, then the proportion-correct 

values for each group at 5 are given by Pr  ̂ -  RF / N r , and Pn -  Rn / .

The STD Statistic

The standardized difference in proportions correct is defined as

STD - £  (P,. - P )  CF , (1)
S -0
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where the signed difference, Pv -  PB is weighted by the relative frequency of F. The 

statistic is defined on the proportion-correct scale and indicates, on average, how 

members of F  differed from comparable members of B . Negative values of STD indicate 

that an item favors B, while positive values indicate that an item favors F. Values of the 

STD statistic near zero indicate no DIF.

The M H  Statistic

If WP and WB are the absolute frequencies of incorrect responses to this item in

F  and B  respectively at s, and N s is the total number of responses at sy then the

Mantel-Haenszel common-odds ratio estimator is
k

If QFs and (2Rs are defined as (1 -  P ^)  and (1 -  PB ) respectively, then this 

statistic could also be written as

The MH statistic can be interpreted as an estimate of the common odds-ratio. It 

indicates, on average, how much more (or less) likely it is that a member of B  answered 

the item correctly than did a comparable member of F. The MH statistic has a value at 

or near 1.0 if there is no DIF between B  and F. If the item favors B y MH is greater than

M H
EW".
s - O (2)k

E ^ B s/ 'Vs
s - 0

M H  -

s - O

k

k

(3)
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1.0; if the item favors F, MH is less than 1.0. Frequently, the odds ratio is transformed 

by using some function of the negative of the natural log of the ratio.

Population D IF  Indices

The DIF statistics given by Equations 1 and 2 are defined in terms of the 

observed test score. As mentioned previously, the examinees from each group ideally 

should be matched on their latent abilities or true scores. For computer simulation 

work, it is possible to define some measure of population DIF in terms of the latent 

ability or true score. This value then becomes the parameter of interest in estimation 

because it represents the value of the indices when true ability matching or conditioning 

has occurred. The DIF statistics can be compared to these population DIF indices, 

which then serve as a reference for valid DIF identification.

The usual assumption concerning the latent ability or true score can be made, 

namely that the latent ability, 0, is a continuous random variable with known density 

functions. If these arbitrary density functions of 0 are denoted by gF(0) and £B(0), then 

the combined group density can be represented by

g*(0) - <*sF(e) + O-°Os»(0) >

where a mixing proportion, a, is defined as 0 < a  < 1. The mixing proportion is usually 

taken to equal the relative proportion of examinees who appear in F  (either sampled or 

in the F  population).

The definitions of each population DIF index are facilitated by replacing the 

proportions correct and incorrect at each score category (i.e., Pn , Q v , Pv and Q n ) with 

probability functions of the latent ability variable, 0. In the context of the present paper,



it was assumed that the success probabilities, Pb(B) and -PF(0), were given by the 

unidimensional three-parameter logistic item response function with known item 

parameters for each group and for each item, or in general by

p ( e) -  c + ___^ ~ c)____. (4'
1 +  e - 1 .7 a (9 -b )

A  population value of STD, was defined as the expected difference between

the proportions correct, relative to (or weighted by) gF(0) as the standardizing

distribution (Kendall, Stuart, & Ord, 1987, p. 46), or

The population value of the common-odds ratio, x|r, was defined to be the latent 

variable-equivalent to Equation 3, or

Defining Equation 6 as the population value of the common-odds ratio is not 

without some interpretative difficulties. Greenland (1982) pointed out that, although 

there are several interpretations of an odds ratio when the ratio is not assumed to be 

homogeneous in the population (i.e., the odds ratio is not constant across different values

(5)
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of 0), the weights, (C ^ G F ) /G * S, used in the Mantel-Haenszel estimator have no logical 

interpretation in the population. However, within the context of the present study, it was 

more important to compare the effects of conditioning on the observed score as opposed 

to the true latent variable, 0, than to defend one population interpretation over another. 

And because different definitions of the population odds ratio can result in quite 

discrepant values for the odds ratio parameter (Greenland, 1982), the definition given in 

Equation 6 was chosen so that any confounding of results which could be attributed to 

an inconsistent choice of the population odds ratio (i.e., inconsistent with the MH 

statistic) would be eliminated.

Prior Ability Distributions

Previously, it was stated that if examinees from different populations have been 

matched on observed test scores, they might not be matched on latent abilities. This 

occurs whenever the conditional distributions of true score given observed score are 

different for the two groups.

Zwick (1990) showed that if the test reliabilities for both groups were less than

1.0, and if the means of the ability or true-score distributions for each group were not 

equal so that the ability distributions were incongruent, then the conditional distributions 

of true score given observed score would not be identical but would result in conditional 

distributions that were described as being stochastically ordered. Under certain 

circumstances, this could produce results that would lead to the MH DIF statistic 

erroneously favoring the group with the higher ability. Regardless of the order of the 

conditional error distributions of observed score given ability, or f ( X |0), if such



distributions exist for both groups, then different distributions of ability, £(0), will yield 

different conditional distributions of ability given observed score, / ( 0 | I ) ,  due to Bayes 

theorem.

Degree o f Distributional Incongruence

A measure of the degree with which the two distributions of 0, gF(0) and gB(0) , 

are incongruent is the percentage of overlap of the areas under the density functions. 

This measure allows for an infinite number of combinations of distributions to be 

mapped to a simple scalar between 0.0 (signifying no overlap or total incongruence) and 

1.0 (complete overlap, or total congruence), and is defined by

OVERLAP - MINfeB(0),gF(0)] d8 . (7)

Method

The present study utilized computer simulation methods in order to manipulate 

the primary condition of interest, the degree of incongruence or overlap between the 

distributions of ability of two populations of examinees (B and F). In order to make the 

results more generalizable to real testing situations, item responses taken from previous 

administrations of a 40-item ACT Assessment Mathematics Usage Test were fit using a 

three-parameter logistic model that assumed a unidimensional examinee trait or ability. 

Two comparison samples of 2000 Caucasian and 2000 African-American examinees were 

used to obtain separate B and F group item parameter estimates. Marginal maximum 

likelihood procedures, which assumed standard normal prior ability distributions, were



used on each of the two samples via the computer program, PC-BILOG 3 (Mislevy & 

Bock, 1989).

Because the groups were thought to be nonequivalent, the item parameters from 

the F  group (aF, bF, and cF) were rescaled (a’F, b \ ,  and c ’F) to the B group parameters 

using the family of linear transformations,

°pa*p -  —  , b \  -  bF'A +B , c*F -  Cp ,
A

where

SD (bn) ^
A  " cnTTT ’ and B  ‘  (Eb)SD(oF)

"Real" DIF between the two groups on any of the 40 items was thus somewhat 

reflected in the item parameter estimates.1 As far as goodness-of-fit was concerned, no 

statistical procedure was used to assess the degree of model fit or misfit. Prior 

experience has shown that the unidimensional three-parameter logistic model fits these 

types of mathematics items on samples of 2000 at least well enough to yield item 

parameters that can subsequently produce observed score distributions that are very 

close to those obtained from national administrations of the tests. Therefore, these 

parameters estimates were used as known item parameters in all of the subsequent 

computer simulations.

The B  ability distribution, £B(0), was always assumed to be standard normal. 

Therefore, only gF(0) varied throughout the simulations, and the measure of 

incongruence between the two ability distributions was the proportion of their overlap (in
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area). The F ability distribution, £F(0), was normally distributed with variance fixed at 

either 1.0 or .5. The Focal group mean was varied such that /iF(0) < Mb(0).

The known item parameters were used to describe the success probabilities,

/ ,,;(0) and P n(0), with the item response function given by Equation 4. Once #F(0) and 

gR(0) were specified and a value of 0 from either F  or B  had been sampled, 40 item 

responses were generated in the usual way by comparing either PP(Q) or P,3(0) to a 

pseudorandomly generated uniform deviate between 0 and 1. Statistics were then 

computed as functions of the item responses from either Equation 1 and 2, and these 

values were compared to fisrD and ijr from Equations 5 and 6, respectively. Actually, the 

negative of the natural log of Equation 2 and Equation 6 was computed. Sampling 

variability was achieved by replicating each simulation 100 times and by drawing samples 

of 500 values each of 0 from #F(0) and £B(0).

Two methods were used to assess the fidelity of either DIF statistic in the 

identification of an item’s true DIF status. One was to compute the bias, standard error 

and root mean square error relative to the population DIF value over replications.

These values also could be averaged over the 40 test items to obtain single measures of 

estimation accuracy. The second method was to arbitrarily establish a DIF criterion 

value for each true DIF index and then to observe the proportion of true positive and 

true negative DIF identifications or "hit rates" over replications and items. The DIF 

criteria used were ImstdI > and | -1 n( ijr) | > ln(2).

Regardless of the degree of incongruence, the simulated test overall was free from

DIF, as measured by _ L z (mST0) and - i - 2  -ln(ijr). These average population DIF



values varied only from -.0116 to .0057 and from -.0409 to .0429, respectively, and 

indicated, on average, a test free from DIF.

I

Results

The results of the computer simulations are summarized in a series of plots given 

by Figures 1-3. Figures 1 and 2 show the results of the MH and STD estimators, 

respectively, in terms of average bias or [(-In MH) - (-In \J/)] (across items), average 

standard error (SE of estimate across items) and average root mean squared error 

(RMSE across items), each as a function of distributional overlap. In each of these 

figures, the solid lines represent those situations where the variances of F  and B ability 

distributions were equal to 1.0; the dotted lines indicate those situations in which the 

variance of the ability distribution of F was .5 while the variance of the ability 

distribution of B  remained at 1.9.

Insert Figures 1 and 2 About Here

Figure 3 shows the proportion of times (out of 100 replications) that MH and 

STD accurately identified items as either having no DIF or as having DIF, as measured 

by the DIF criteria given above. Because the simulated tests were, on average, free from 

DIF, these "hit rates" tended to be situations involving true negatives (i.e., items without 

DIF). Once again, the solid and dotted lines represented the two different variance 

conditions.
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Insert Figure 3 Here

M H  Results

It was anticipated that the bias in MH would become increasingly negative as 

overlap decreased, due to the effect of ordered distributions on MH, as discussed by 

Zwick (1990) (i.e., as gF(0) became less than gn(0) in terms of stochastic ordering,

-In MH should have favored B  in terms of the DIF analysis). Figure 1 shows that this 

did not occur. The MH bias remained slightly positive but basically close to zero until 

the percentage of overlap fell to values near .1. The obvious explanation for the 

apparent unbiased behavior of MH even as overlap approached zero was due to the 

presence of empty cells or zero frequencies for many of the score categories. These zero 

contributions to the overall estimate of the log of the common odds-ratio did not affect 

the no-D IF  conclusion. And because this was the true situation, the MH estimates 

appeared to be unbiased.

The instability of the MH estimator as the percentage of overlap decreased was 

also apparent from the increase in the SE. See Figure 1. Overall, the RM SE remained 

fairly constant until the percentage of distributional overlap was less than .4. This value 

of .4 represented mean differences of -1.75 in the equal variance case and -1.5 in the 

unequal variance case.

11



The correct identification of DIF and no-DIF items remained fairly high, above 

.90, for M H until overlap reached approximately .3. The MH Hit Rate fell off sharply 

after that. See Figure 3.

STD Results

Similar findings were noted for the STD estimator. Assuming that the stochastic 

ordering of the two distributions would once again produce results which (falsely) 

favored B , it was again anticipated that the bias in STD would become increasingly 

negative as overlap decreased. Figure 2 shows that the STD estimator remained fairly 

unbiased once again, even when the overlap percentage approached zero. The SE again 

increased as the two distributions separated, which resulted in an increase in the RMSE. 

These results were consistent across both variance conditions.

Correct DIF identification with STD was consistently lower than that of MH until 

the percentage of distributional overlap reached .2. After that, the situation was 

reversed with STD performing better than MH. See Figure 3.

Asymptotic Bias

In order to determine the effect of sample sizes on these results, it was possible to 

evaluate MH and STD as the number of items, k, remained fixed and the sample sizes 

within the cells of the k +1 2 X 2 tables used to obtain MH and STD increased 

indefinitely. This was done analytically, using a recursive procedure to obtain f ( X |0) and 

hence, h(X),  for each group, as described in Lord and Wingersky (1984, p.454). This 

evaluation did two things. First, because the sample sizes were infinite, SE was driven to 

zero. And because the cells contained expected frequencies, zero cell frequencies were

12



eliminated. These analytical values of MH and STD were then compared to and - 

In The difference between the analytical and the population value was termed 

asymptotic bias. Figure 4 shows the average asymptotic bias (over items) of MH and 

STD as functions of overlap. In this figure, the anticipated direction of the bias was 

confirmed. Both MH and STD were biased in the direction of B  (i.e., negatively). Note 

that the severity of the bias for MH and STD was about the same. The appearance of 

differences between MH and STD in Figure 4 was due to differences in the scales of the 

two estimators.

Insert Figure 4 Here

Figures 1, 2, and 4 illustrate an interesting paradox in using the MH and STD 

estimators when the two ability distributions were non-overlapping. The statistics 

remained fairly unbiased for tests with no DIF  when the sample sizes were moderate, due 

to the many zero cell frequency contributions to MH and STD. However, for these 

moderate sample sizes, the SE was fairly substantial. The end result was that the RMSE 

increased as overlap decreased. Increasing the sample sizes would certainly decrease the 

SE of the MH and STD estimates but coincidentally it would increase the bias. The net 

result would be the same, namely that the RMSE would increase as the percentage of 

overlap decreased.
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Results for Completely Congruent Cases

Three other simulations were conducted to show the effects of reduced test 

reliability alone, as opposed to distributional incongruence, on DIF identification. These 

simulations were conducted so that the variances of both latent ability distributions were

1.0, but Mf6 and Moe were both set at -1.0, -2.0, and -3.0. The results were then 

compared to the original case of complete congruence, with /uFe and equal to 0.0, as 

well as the non-overlapping cases illustrated previously in Figures 1-4. In this way the 

effects due to distributional incongruence could be somewhat separated from those due 

only to reduced reliability. These results are summarized in Table 1.

Insert Table 1 Here

As Table 1 illustrates, most of the increases in SE (and, consequently in RMSE) 

and the decreases in Hit Rates seen in Figures 1-4 were due to distributional 

incongruence rather than to lowered test reliabilities alone. As long as the two 

distributions remained congruent, SE and Hit Rates were fairly consistent. And although 

there was some decline in DIF identification performance as reliability decreased, it was 

not as severe as that observed when overlap was less than 1.0. However, it should be 

pointed out that reduced test reliability and distributional incongruence, as modeled in 

these computer simulations, were somewhat confounded. Obviously, it was impossible to 

shift gF(8) too far in the negative direction without affecting the test reliability of F, due 

to the nonzero lower asymptote imposed by the three-parameter logistic function.
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Although distributional incongruence imposed a reduced reliability condition on F, it was 

necessary to tolerate this confounding unless the item parameters were modified across 

each simulation condition, which was an unappealing alternative.

Table 1 also shows that the average asymptotic bias remained relatively 

unchanged as long as the two distributions were congruent. The average bias for 

samples of 500 was fairly close to the asymptotic results, even when test reliability was 

reduced.

Discussion

Although the results of these simulations were obtained using item response 

models estimated from a specific test and abilities generated from specific distributions, 

it is believed that these results are generalizable to a broader class of testing situations 

because of the wide range of distributional incongruence studied and because the test 

that was used to generate the responses was typical of many achievement tests. The 

major conclusion drawn from this study was that the use of the observed score, X , as a 

latent ability surrogate in computing MH and STD appeared to be acceptable, even 

when the degree of distributional incongruence was fairly substantial. DIF identification 

by MH and STD was acceptable for latent ability distributions that were as much as 1.5 

to 2.0 standard deviations apart.

These results would appear to hold for tests which contain few DIF items. A 

similar study should be conducted to investigate the effect of the severity of distributional 

incongruence on tests where the occurrence of DIF is more frequent.
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Footnote

^ tem  param eter estimates are not included in this paper but will be provided upon 

request.
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Table 1

DIF Results for Completely Congruent Cases

MH STD

Congruent 
Base & Focal 
Distributions 

(m, a2)
Reliabilities 

(Base, Focal)

ASYMP
TOTIC

BIAS

BIAS
SE

RMSE
H IT

RATES

ASYMP
TOTIC
BIAS

BIAS
SE

RMSE
HIT

RATES

.0039 .0125 .967 :oon .0031 .957

(0, 1) (.91, .93) .1568

.1647

.0267

.0279

.0320 .0432 .975 .0059 .0142 .969

(-1. 1) (.86, .86) .1692

.1761

.0273

.0311

.0152 .0138 .941 .0021 .0068 .928

(-2, 1) (.69, .65) .1973

.1905

.0246

.0254

-.0049 -.0332 .885 -.0006 -.0027 .921

(-3, 1) (.34, .28) .2463

.2282

.0229

.0227
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Figure Captions

Figure 1. Bias, SE, and RMSE as a function of overlap for MH 

Figure 2. Bias, SE, and RMSE as a function of overlap for STD 

Figure 3. Hit rates as a function of overlap 

Figure 4. Asymptotic bias as a function of overlap
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MH ESTIMATOR

Overlap

Figure I. Bias, SE, and RMSE as a function of overlap for MM



STD ESTIMATOR

Overlap

Figure 2. Bias, SE. and RMSE as a function of overlap for STD
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Figure 3. H i t  r a t e s  as a  f u n c t i o n  o f  o v e r l a p
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Figure •/. A s v m p t o t i c  b i a s  as  a  l u n e t i n n  o i ' o v e r l a p
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