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A bstract

Computer simulations under three conditions of polytomous DIF compared the ability of 

three different statistical procedures to detect nonuniform DIF. The procedures were a nominal 

and an ordinal extension of the Mantel-Haenszel statistic, and logistic discriminant function 

analysis. Results showed that only the logistic discriminant function analysis could detect all 

types of nonuniform DIF simulated when sample sizes were moderate-to-large (i.e. N > 500). 

This procedure is recommended when nonuniform DIF identification is required.
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The use of polytomously scored items in addition to, or in place of the more traditional 

correct/incorrect item formats, requires reconsideration of some of the psychometric procedures 

that are specific to the dichotomous situation. In particular, the identification of differential item 

functioning or DIF within each of J  categories of a polytomously scored item requires either 

modifications of procedures that are currently used for dichotomous items, or the creation of new 

procedures that are especially suited for multiple-category item scoring. Several extensions of 

the existing Mantel-Haenszel procedure, a popular method for identifying DIF in dichotomous 

items, have been suggested for the polytomous case. These extended Mantel-Haenszel procedures 

are similar to those used in the dichotomous situation for 0/1 item responses which have been 

tabulated in a 2 X 2 X K  table, in that they assume that there is no three-way interaction. In 

other words, nonuniform DIF is assumed not to exist. The only way that this assumption can 

be tested is if a procedure is used that allows for a specific test of the presence of the three-way 

interaction. Examples include tests of significance of the interaction term in the fitting of a log- 

linear model, or of the interaction coefficient in a logistic regression model (Swaminathan & 

Rogers, 1990).

The identification of nonuniform DIF might be more important in a polytomous item than 

in a dichotomous one because there are potentially more ways in which the group-by-response- 

by-score interaction can manifest itself in the polytomous situation. For example, it is possible 

that in addition to the usual nonuniform DIF situation in which the proportion of examinees in 

a group with some response, U = u, varies as a function of the conditioning score, one could 

have the situation where the proportion remains constant throughout the score scale but reverses 

group direction for different item response categories. Although this is not the typical way in
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which nonuniform DIF occurs, its detection is still important. Any useful polytomous DIF 

procedure should be powerful enough to detect such occurrences with sufficiently large power.

Another method proposed to detect situations of nonuniform DIF in polytomous items is 

called logistic discriminant function analysis (LDFA). This method has recently been suggested 

as a useful procedure for the identification of DIF (both uniform and nonuniform cases) in 

polytomous items (Miller & Spray, 1993). The method is similar to those mentioned previously 

(i.e., log-linear modeling and logistic regression) in that a separate test of the significance of the 

interaction is available. However, the LDFA method is much easier to implement than the 

logistic regression for the polytomous case (Miller & Spray, 1993). The method is identical to 

some log-linear modeling approaches (Hanson, 1992), but may be easier to interpret because of 

graphical procedures which can be used post hoc to investigate the direction and magnitude of 

the DIF visually (Miller & Spray, 1993).

Although they lack separate tests of any possible interaction, several extensions of the 

Mantel-Haenszel procedure are available for DIF identification in polytomous items, depending 

upon whether the responses can be treated as nominal or ordinal. Mantel and Haenszel (1959) 

extended the 2 X 2 X K  situation to the 2 X 3 X K case with 3 nominal levels of response, and 

showed that a summary chi-squared statistic with 2 degrees of freedom could be obtained (pp. 

743-745). The authors also gave approximations for the more general, 2 X J  X  K  situation, 

where there are J  nominal response levels. Agresti (1990) later summarized work which gave 

exact, rather than approximate, procedures for the more general /  X ./ X K  case.

Mantel (1963) later proposed an extension whereby the ./ responses are scored or weighted 

by ordered scores. Mantel showed that the summary score statistic was simply the weighted sum 

of the J  frequencies, weighted by the J  scores at each of the K  levels. This amounted to testing
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a null hypothesis about the mean level of th e ./ responses, so that the summary statistic was tested 

with a single degree of freedom only (Mantel, 1963). This score statistic was extended by 

Landis, Heyman, and Koch (1978) to the /  X ./ X K  situation where either the J  response levels, 

the / levels, or both are ordered and ordinal scores can be assigned to the responses. A 

convenient vector representation of this situation is provided by Agresti (1990, p. 286).

In the 2 X 2  X  K  situation with dichotomous items, the Mantel-Haenszel procedure often 

is quite robust in detecting DIF, even when there is a serious violation of the assumption of no 

three-way interaction. Therefore, the purpose of this paper was to report a series of computer 

simulations in which different types of DIF were present in simulated polytomous item responses. 

Three procedures were then used to detect the presence of DIF. The procedures were compared 

on the basis of their ability to detect true D[F when it existed (i.e., statistical power) and to detect 

it when it did not exist (i.e., Type I error). The procedures used in the simulations were (1) the 

extended Mantel-Haenszel test on nominal data with J - 1 degrees of freedom, (2) the Mantel 

score statistic on ordinal data with one degree of freedom , and (3) the LDFA procedure. Each 

procedure is briefly described below.

Logistic Discriminant Function Analysis

The logistic discriminant function, which is estimated via the LDFA procedure, can be

written as „ „ v „

Prob(C I X yU) = - ___________________ , (D1 +  e ( - ^ - n lX - ^ U - u iX<U)

where the a i? / = 0, 1 ,2 , 3, are the discriminant function coefficients to be estimated and G is 

a Group indicator variable where, for example, G = 1 for the Reference (R) group and G = 0 for 

the Focal (F) group. U is the item response variable that can take on any one of the J  values 

associated with each item.
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Tests of significance of the coefficients, a 3 and o^, provide answers to the questions 

concerning nonuniform and uniform DIF, respectively. Specifically, the significance of <X3 is 

tested by first fitting the hierarchical model given by

Prob(G I X,U) = —______________  (2)
I +

The difference in the log of the likelihood functions obtained from Equations 2 and 1 is used to 

test for nonuniform DIF or the significance of a 3. The significance of is tested by next fitting 

the null model, given by

^ ( l -G X - a 0-a ,X)

Prob(G | X y(J) = Prob(C IX) = ___________  . (3)

Equation 3 is termed the null model because it represents the probability of group 

membership only as a function of group sample sizes and group distributions on X. The item 

response variable is ignored. Thus, the null model given by Equation 3 remains constant from 

item to item. The difference in the log of the likelihood functions obtained from Equations 3 and

2 is used to test for uniform DIF or the significance of o^.

Each difference in the log likelihood functions is asymptotically distributed as a chi- 

squared random variable with one degree of freedom. Thus, with the LDFA procedure, two 

separate tests can be performed for nonuniform and uniform DIF. The nonuniform DIF test can 

also be thought of as a test of the no-three-way interaction assumption.

Mantel-Haenszel Extensions

For both extensions described below, the data are assumed to be tabulated in a 2 X  J  X  

K  table (i.e., 2 groups by J  responses by K  levels of the conditioning or matching variable).
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Nominal Case

The observed counts or absolute frequencies in ./-l cells for the R group across K levels 

are denoted by nk = (nKlk, nK2k, ..., nR<Mk);. The expected frequencies under the hypothesis of 

conditional independence (i.e., no uniform DIF) are mk = (nR+kn+lk, nK+kn+2k, ..., nR+kn+J., k);. Vk 

denotes the null covariance matrix of nk (see Agresti, 1990, p.234). Summing over the k  strata 

gives n = £ n k, m = Zm k, and V = LVk. Then the nominal version of the extended Mantel- 

Haenszel statistic is given by

MHnom = ( i i -m /V -V m ).

This statistic has a large-sample chi-squared distribution with ./-l degrees of freedom under the 

null hypothesis of conditional independence. A significant test implies that uniform DIF is 

present in the item.

Ordinal Case

The observed counts or absolute frequencies in the £th level are denoted by nk = (nRlk, 

nR2k, nR Jk, nFlk, nRk, ..., n,u k/ .  The expected frequencies under the hypothesis of conditional 

independence (i.e., no uniform DIF) are ink. Vk denotes the null covariance matrix of nk. Also, 

let Uk = (»j,w2,...,wj), a vector of response category scores, such as /, 2,...r/. The scores will 

usually correspond to the values assigned to the scoring of the item. Then, let Bk denote a vector 

of length /./ of score constants, where Bk = (m1,m2,...,wj,-//,,-m2,...,-hj). The ordinal or scored 

version of the extended Mantel-Haenszel statistic is given (Agresti, 1990, p. 286) by

= {EBk(nk-m k) )'{EBt V kB , ') 1 (£B k(nk-m k) | , 

where the summation is over k. This statistic has a large-sample chi-squared distribution with 

1 degree of freedom under the null hypothesis of conditional independence (i.e., no uniform DIF). 

A significant test implies that uniform DIF is present in the item. A simpler but equivalent,



algebraic representation of M antel’s score statistic for ordinal responses is given by Mantel (1963, 

p. 694).

Method

The Simulations

Item responses were generated from M uraki’s generalized partial credit model (Muraki, 

1991), which gives the item-response density functions or item category characteristic curves 

(ICCCs) as functions of a unidimensional latent ability, 0. This model can be written as

k
exp[Ztf(0 -bp]

Prob(£/ =«. 16) = _____---------------- , (4)
K j  n\

Z e x p [£ tf (0 -/?.)]
m =l j - \  }

where the b ly parameters define the points of intersection of the adjoining ICCCs and a 

represents a slope parameter relating to the discriminating power of the item. According to 

M uraki," ... the discriminating power of each ICCC depends on the combination of the slope and 

threshold parameters" (p.7). Thus, it is possible to have several different levels of discriminating 

power for the different item responses within the same test item.

There were 20 items on the simulated tests. Only the last item, item #20, had simulated 

DIF. The remaining 19 items had identical item parameters for the two groups. These 

parameters were a = 1.0, b{ = .00, b2 = -1.00, = .5, and b4 = 1.00. Two sample sizes were

used for each group: 500 and 2000. Ability populations were assumed to be identical for both 

the focal (F) and reference (R) populations. Ability (i.e., 0) sampling was simulated from a 

standard normal distribution.
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There were three DIF conditions simulated. The first condition was a simple uniform  DIF 

case where the ^-parameters for both groups remained the same but the />parameters were shifted 

or offset by a constant amount. For Condition / ,  the R group parameters were {tf=1.0,/?,=0.0,fr2=-

1.0,/?3=.5,fr4=1.0}, while the F group parameters were { a - \ .0 ,b ]=0.0,b2= -J5 ,b3=J5J?4=\ .25}. In 

other words, the item was consistently more difficult for each response category for members of 

the F group than for comparable members of the R group. Figure 1 illustrates the ICCCs for this 

item. Response probabilities for the F group are plotted as dotted lines.

see Figure 1 at end of report

For the second condition, nonuniform DIF was simulated where the ^-parameters for each 

group varied but the /^-parameters remained the same. For Condition 2, the R group parameters 

were {a=1.0,^1=0-0,^2=-l-0,^3=.5,ft4=1.0}, while the F group parameters were [a~.5,b}=0.0,b2=-

1.0,b3=.5,b4= 1.0}. This item was more discriminating for the R group for all response categories. 

See Figure 2.

see Figure 2 at end of report

For the last condition, a less traditional type of nonuniform DIF was simulated. In this 

case, the ^-parameters for each group once again remained the same and only two of the b- 

parameters varied, but in different directions. For Condition 3, the R group parameters were 

{ a ~ \ .0 ,b l= 0.0 ,b2= - J 5 ,b 3~ .1 5 ,b 4= 2 .0 } , w hile  the F group  param ete rs  w ere
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[a=\.0,bl-0.0yb2=.75,fr3=-.75,/?4=2.0}. This item was therefore easier for the R group for the 

second category but more difficult for the third category. See Figure 3.

see Figure 3 at end of report

One hundred replications were performed for each of the two sample sizes and for each 

of the three DIF conditions. A test was significant if the null hypothesis was rejected at a 

probability level that was less than .05/20 or .0025. Power was computed as the number of 

replications, out of a possible 100, that a significant test was observed for item # 20. A type I 

error rate was computed as the number of replications, out of a possible 100, that a significant 

test was observed for items #1 -# 19. The summary error rate was the average error rate over 

those 19 no-DIF items.

Results

The results of the simulations are summarized in Tables 1 and 2. Table 1 gives estimates 

of power for Item #20 for each of the three different DIF procedures, along with the average chi- 

squared statistic. For Condition 1, where the item was consistently more difficult for each 

response category for members of the F group than for comparable members of the R group, all 

three of the DIF procedures identified the item as having uniform DIF with similar power. For 

the smaller sample sizes of 500, the nominal form of the MH was less powerful than the ordinal 

MH extension. However, at the larger sample size of 2000, all of the procedures yielded high 

power estimates. The LDFA test for nonuniforin DIF was nonsignificant, as it should have been 

for this DIF condition.

8



see Table 1 at end of report

For Condition 2, where item #20 was more discriminating for the R group for all response 

categories and the traditional nonuniform DIF was present, the LDFA test for nonuniform DIF 

showed moderate power for a sample size of 500 and higher power at the larger sample size. 

Two of the three uniform DIF tests (MHord and LDFA) showed very low power to detect this 

type of nonuniform DIF, as was to be expected. However, the MHnom procedure showed 

moderate power (.30) in identifying this traditional nonuniform DIF at the larger sample size 

(2000). See Table 1.

For the third condition, where item #20 was somewhat consistently easier for the R group 

for the second category but more difficult for the third, the MHnom procedure showed very high 

power to detect this type of nonuniform DIF even with the smaller sample size. The LDFA 

nonuniform DIF test had a low-to-moderate degree of power at the same sample size. Both the 

LDFA nonuniform test and the MHnom demonstrated a high degree of estimated power for DIF 

identification at the larger sample size. Both the MH0f<1 and the uniform test of the LDFA 

procedure failed to identify this DIF situation in item# 20.

Table 2 gives estimates of average type I error for Items # 1 -# 19 for each of the three 

different DIF procedures for the three DIF conditions. Recall that the nominal a  level for these 

simulations was .0025. Table 2 shows that, with the exception of the LDFA nonuniform test for 

Condition 2, estimated type I error rates were within reasonable ranges of the nominal level for 

all procedures, for all sample sizes, and under all DIF conditions.
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see Table 2 at end of report

Discussion and Conclusions

These simulations showed that the LDFA procedure was capable of identifying simulated 

DIF, both uniform and nonuniform, in polytomous items with a high degree of power. The 

procedure could also distinguish between uniform and nonuniform DIF. The only instance where 

the performance of the LDFA procedure was surpassed by another procedure was the condition 

simulated by Condition 3 when the sample sizes were fairly small. In this instance, the MHnom 

procedure was much more sensitive to the directional change across response categories. 

However, with a larger sample size, the LDFA procedure also identified this type of nonuniform 

DIF accurately. The fact that the MHm)m procedure could not identify the type of nonuniform 

DIF simulated in Condition 2, even with fairly large samples of 2000 in each group, would 

suggest that it might not be the best procedure to use if the identification of such DIF is 

important. The MH()r(i statistic was not accurate in identifying true DIF except in the uniform 

DIF situation. Even then, the LDFA approach was equally powerful in uncovering this type of 

DIF. Therefore, when fairly large sample sizes are available (i.e. N > 500), it is recommended 

that the LDFA procedure be used for DIF identification with polytomously scored test items.
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Table 1
Power Results, Item #  20

Condition Sample Size Procedure Power Average %2

MHnom (3 df) .350 13.016

MH„d (1 df) .570 11.390

500 LDFA (uniform) (1 df) .600 12.136

LDFA (nonuniform) (1 df) .000 1.111

1 MH„_ (3 df) 1.000 40.172

MHor(l (1 df) 1.000 38.177

2000 LDFA (uniform) (1 df) 1.000 38.715

LDFA (nonuniform) (1 df) .000 0.667

MHnon, (3 df) .040 5.467

MHord (1 df) .020 1.869

500 LDFA (uniform) (1 df) .020 1.868

LDFA (nonuniform) (1 df) .440 9.686

2 M H ^  (3 df) .300 11.693

MHor(l (1 df) .070 2.737

2000 LDFA (uniform) (1 df) .060 2.692

LDFA (nonuniform) (1 df) 1.000 31.196

MH„om (3 df) 1.000 88.951

MHord (1 df) .000 1.393

500 LDFA (uniform) (1 df) .000 1.578

LDFA (nonuniform) (1 df) .370 8.857

3 M H™  (3 df) 1.000 367.159

MHord (1 df) .000 1.945

2000 LDFA (uniform) (1 df) .000 1.937

LDFA (nonuniform) (1 df) 1.000 31.797

l
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Table 2
Type I Error Results, Items #1-#19

Condition Sample Size Procedure Error Average %2

MH,om (3 df) .003 3.080

MH„rd (1 df) .005 1.056

500 LDFA (uniform) (1 df) .004 1.043

LDFA (nonuniform) (1 df) .004 1.106

1 M H ™  (3 df) .004 3.146

M H ord (1 df) .004 1.124

2000 LDFA (uniform) (1 df) .004 1.121

LDFA (nonuniform) (1 df) .003 1.106

MH„om (3 df) .002 3.023

MHord (1 df) .002 1.106

500 LDFA (uniform) (1 df) .002 .993

LDFA (nonuniform) (1 df) .002 .970

2 MHnom (3 df) .002 2.977

MHord (1 df) .002 .996

2000 LDFA (uniform) (1 df) .002 1.001

LDFA (nonuniform) (1 df) .007 1.237

MH„om (3 df) .005 3.045

MHord (1 df) .005 1.019

500 LDFA (uniform) (1 df) .005 1.012

LDFA (nonuniform) (1 df) .005 1.018

3 M H U  (3 df) .003 3.018

MHord (1 df) .002 .977

2000 LDFA (uniform) (1 df) .002 .979

LDFA (nonuniform) (1 df) .001 1.009
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Figure 1 ICCCs for Item #20, Condition I
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Figure 2 ICCCs for Item #20, Condition 2
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Figure 3 ICCCs for Item #20, Condition 3
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