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Abstract

In previous works, Woodruff derived expressions for three different conditional test 

score variances: the conditional standard error of prediction (CSEP), the conditional 

standard error of measurement in prediction (CSEMP), and the conditional standard 

error of estimation (CSEE). He also presented step-up formulas that require only 

weak assumptions and that allow the estimation of full-length test score conditional 

variances from two parallel half-length tests. This study empirically investigates the 

accuracy of the step-up formulas using real test data and concludes that the step-up 

formulas work fairly well for the CSEP and the CSEMP but less well for the CSEE.

The CSEMP is also compared with two other procedures for estimating the 

conditional standard error of measurement (CSEM).
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An Emprical Evaluation of the Accuracy of a Step-up Method 
for Estimating Test Score Conditional Variances

The Standards for Educational and Psychological Testing (AERA, APA, & 

NCME, 1985) list as a secondary standard (one that is desirable but often not 

feasible) the recommendation that, conditional on critical score values, the 

standard error of measurement (SEM) be computed and reported. Under the 

classical test theory model, X  = T + E, the conditional standard error of 

measurement (CSEM) is defined as the conditional observed score (or error 

score) variance for a fixed value of true score, that is, a2(XI T=£) = ct2(EI T=t). In 

practice, true scores are usually not known so methods have been developed 

that estimate <t2(EIX=a) in place of <t2(EI T=t). However, when the conditioning 

is on X rather than T, it can be shown that g2{E IX) = cr2(TIX) = - o{T, EIX) for 

all values of X. Hence, cr2(EI X) is artificially constrained in a way that <r2(EI T) is 

not. Also, Woodruff (1990) shows that if the reliability of X is less than one, 

then }i[o2[E\X)] < ]j[d*[E17}], where fi denotes expectation. Hence, on average, 

ct2(E  IX) is underestimating cr2(EI 7). Such considerations led Woodruff (1990, 

1991) to develop an alternative method for estimating conditional test score 

variances. The purpose of this paper is to empirically evaluate the accuracy of 

this alternative procedure and to compare the alternative procedure with other 

procedures.

The Procedures

Consider two classically parallel full-length tests, XI = Tx + EX\ with mx\ 

items and X2 = Tx + Ejq with mx 2 items, both of which are administered to N 

examinees. It is shown in appendix A that it is reasonable to assume that 

o{Tx, Ex2 1X1) = 0 so that the following decomposition holds:

ct2(X2 1X1) = ct2(Tx IX1) + aHEx2 IX I). (1.)
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Woodruff (1990, 1991) calls a2(X21X1) the squared conditional standard error 

of prediction (CSEP), <72(Tx IX1) the squared conditional standard error of 

estimation (CSEE), and <r2(Ej5C21X1) the squared conditional standard error of 

measurement in prediction (CSEMP). All three of these conditional variances 

offer information about the accuracy of test scores at specific locations on the 

score scale, but it is the CSEMP that is most closely related to the CSEM. In 

Appendix A, it is shown that the average value of the CSEMP equals the 

average value of the CSEM, and this strongly supports the recommendation 

that the CSEMP be used as a substitute for the CSEM. Another advantage of 

using the CSEMP is that the CSEMP requires only the relatively weak 

assumptions of classical test theoiy.

For each value of XI =0, 1, 2.....mxi, let the item scores for X2 be analyzed

as a two-way persons (P) by measures (iW) ANOVA with one observation per cell. 

In these conditioned ANOVA’s, let MSp(X21X1) denote the main effect mean 

square for persons and let MSpm(X2 1X1) denote the persons by measures 

interaction mean square. Following Woodruff (1990, 1991) estimates for the 

three conditional variances are given by:

[CSEP(X2 IXI)]2 = s2(X2 IXI) = mx2MSp(X2 IXI), (2.)

[CSEMP(X21XI)]2 = s2(Ex2 1X1) = mxMSP̂ X 2 1X1), and (3.)

[CSEE(X2IX1)]2 = s2(T*IXl) = s2(X2IXl) -  s2(E*2 lX l)

= mx2lMSp(X2 IXI) -  MSpm[X2 IXI)]. (4.)

In practice, scores on two full-length tests are rarely available. However, if a 

single full-length test can be divided into two parallel half-length tests, then 

estimates for the full-length test conditional variances can be obtained from the 

half-length test conditional variances by using the step-up formulas derived by 

Woodruff (1990, 1991). Suppose that the full-length test, X, can be divided into
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two classically parallel half-length tests, Y1 = Ty + Eyi with myi items and Y2 

Ty + Eyi with my2 items. Let the linear transformation

X* = X*[Y1) = aYl + b (5.)

rescale the half-length test, Y1, to have the same mean and variance as the 

full-length test, X. The stepped-up estimates are:

{lcsEP*[x(r2 )ix*(yi)]r=
2{1 + 3r îy2)

(* + rviy2)
mK2MSp[(y2IX*(yi)], (6.)

{[CSEMP*[X(Y2) I X *(ri)]}2 = 2mY2MSpM[Y2 I X*{Y1) ], and (7.]

{CSEE*[X(Y2) I X*{Y1)]\2 = 

2(1 + 3ryiy2)
mY2 M SJY2 I X*[Y  1)] -  2MSpM[Y2 I X*(Y1)]

(8.)

(l + ^y!y2)

In the preceeding three equations, the conditioning is on X*(Y1), the two mean 

squares are computed from a two-way ANOVA on the item scores for Y2, and 

the notation X(Y2) denotes that these half-length test mean squares have been 

stepped-up to full-length test mean squares. Finally, ryi y2 denotes the sample 

correlation between Yl and Y2.

In what follows, reference will be made to stepped-up half-length test 

conditional standard deviations and to full-length test conditional standard 

deviations. The stepped-up half-length test conditional standard deviations, as 

given on the left side in equations (6.), (7.), and (8.), will always have asterisks 

as part of their name whereas the full-length test conditional standard 

deviations, as given on the left side in equations (2.), (3.), and (4.), will not.
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There are at least two methods that estimate <j2[Ex IX) in place of a2(Ex I Tx). 

The first of these methods is the difference method due to Thorndike (1951). 

This method divides a single full-length test, X, into two parallel half-length 

tests, Yl and Y2, and then calculates

T-CSEM(Ex IX) = s(Yl -  Y2IX) (9.)

as a substitute estimate for o[ExI Tx). Woodruff (1990) critically discusses the 

basis for this method. Another such method is presented by Feldt, Steffen, & 

Gupta (1985). This method is based on an ANOVA of the item responses of X. It 

substitutes as an estimate for a{Ex I Tx) the following estimate

F-CSEM(ExlX) = [mx(MSPM IX)] 1/2 (10.)

where (MSpm IX)] is a conditional interaction mean square from a measures by 

persons ANOVA of the item responses of X  given a fixed value of X.

The Empirical Investigation

The data for this study was a random sample of 40,000 examinees with 

scores on the October1986 ACT Assessment Program (American College Testing 

[ACT], 1987). The ACT Assessment Program (AAP) then consisted of 219 

dichotomously-scored items from four subtest areas: 75 from English, 40 from 

Mathematics, 52 from Social Studies, and 52 from Natural Sciences. Though 

data from 219 items were available, the goal was to divide the items into four 

parallel groups of items so the first three English items were eliminated. The 

remaining 216 AAP items were treated as an item pool from which parallel tests 

and half-tests could be constructed. In particular, four 54-item half-length 

tests were created and these were combined to yield two 108-item full-length 

tests. The four half-length tests were denoted Yl, Y2, Y3, and Y4. The two half- 

length tests Yl and Y2 were combined to yield the full-length test X I, and the 

two half-length tests Y3 and Y4 were combined to yield the full-length test X2.
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All four half-length tests were carefully constructed to be balanced in content 

and to have similar test score statistics. The two full-length tests also were 

constructed to be balanced in content and to have similar test score statistics.

The first step in constructing the four parallel half-length tests and the two 

parallel full-length tests was to compute the correlations between item position 

and item difficulty within each one of the four AAP sub tests. Because the items 

within these four AAP subtests were ordered by item difficulty, negative 

correlations of -.36, -.88, -.56, and -.62 were found for the English, 

Mathematics, Natural Sciences, and Social Sciences AAP sub tests, respectively. 

As a consequence, a systematic selection of the subtest items in their original 

test order was used. Table 1 shows the systematic item selection scheme for 

half-length tests Y l, Y2, Y3, and Y4. For example, to construct test Y l, the 1st 

out of every 4 English items, the 4th out of every 4 Mathematics items, the 3rd 

out of every 4 Social Studies items, and the 2nd out of eveiy 4 Natural Sciences 

items were used. As a result, each one of the four parallel half-length tests had 

18 English items, 10 Mathematics items, 13 Social Studies items, and 13 

Natural Sciences items; and each one of the two parallel full-length tests had 

36 English items, 20 Mathematics items, 26 Social Studies items, and 26 

Natural Sciences items. The full-length tests and half-length tests were not 

homogeneous in content, but they were parallel in content. This illustrates an 

advantage of the current method, namely, an assumption of unidimensionality 

is not required.

Tables 2 presents some relevant test score statistics for the two 108-item 

parallel full-length tests, XI and X2, and the four 54-item parallel half-length 

tests: Y l, Y2, Y3, and Y4. The statistics in Table 2 indicate that the two full-
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Table 1. Systematic Item Sampling Scheme for Constructing Parallel Half-Length Tests.

AAP Subtests

Half-Length Test English Mathematics Social Studies Natural Sciences

Y1 1 4 3 2

Y2 2 3 4 1

Y3 3 2 1 4

Y4 4 1 2 3

Table 2. Test Score Statistics for the Full-Length and Half-Length Tests.
Mean SD Correlations. KR20's. and Dissattenuated Correlations*

Test X I X 2 Y1 y2 Y3 Y4

X I 62.2 16.8 0.93 0.93 ---- — ---- ----

X 2 59,9 16.7 1.00 0.93 ---- — ---- ----

YJ 31.4 8.7 — ---- 0.87 0.87 0.87 0.87

Y2 30.8 8.7 — ---- 1.00 0.87 0.87 0.87

Y3 29.5 8.7 — ---- 1.00 1.00 0.87 0.87

Y4 30.4 8.6 ---- ---- 1.00 1.00 1.00 0.87

•Correlations are above the diagonal, KR20's are on the diagonal, and dissattenuated 

correlations are below the diagonal.
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length tests have nearly identical test score statistics except for a modest 

difference between the means, and that should have little effect on the 

procedures under study. The same is true for the four half-length tests. 

Relevant correlations, KR20’s, and relevant dissattenuated correlations (using 

the KR20’s) are also presented in Table 2. These support the claim that the 

half-length tests and the full-length tests are indeed parallel.

The full-length test score scale of 108 items was divided into intervals that 

comprised three score points starting with a score of 1, These intervals had

midpoints of 2, 5, 8.....  104, and 107. CSEP, CSEMP, and CSEE estimates

using full-length tests XI and X2 were computed for each of these intervals 

except for some intervals at the bottom and top of the score scale that did not 

have a sufficient number of examinees for stable estimation. However, the 

expected guessing score on a 108-item test is 27 and the ACT Assessment 

Program (ACT, 1987) is designed so that few examinees obtain nearly perfect 

scores. Hence, the score interval midpoints of 26 through 96, for which stable 

CSEP, CSEMP, and CSEE estimates were obtained, covers the length of the 

score scale that the AAP was designed to most effectively measure. Two sets of 

such estimates were obtained: one conditioning on XI and the other 

conditioning on X2.

Next, two sets of stepped-up half-length test estimates of the CSEP, CSEMP, 

and CSEE were computed using the two pairs of half-length tests (pair 1: VI 

and Y2, pair 2: Y3 and Y4) and the same three-point wide test score intervals. 

These stepped-up half-length test estimates of the CSEP, CSEMP, and CSEE 

were then compared to the full-length test estimates of the CSEP, CSEMP, and 

CSEE computed directly from XI and X2. In particular, the
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CSEP*[X(Y2) IX*(Y1)1 was compared to the CSEP(X2 1X1) and the 

CSEP*[X(Y4) IX*(Y3)] was compared to the CSEP(X11X2). Similar comparisons 

were made for the CSEMP and the CSEE.

Figure la in Appendix B is a graph of the stepped-up half-length test 

estimates: CSEP*[X(Y2) IX*(Y1)], CSEMP*[X(Y2) IX*(Y1)], and 

CSEE*[X(Y2) IX*(Y1)1 along with the full-length test estimates: CSEP(X21X1), 

CSEMP(X21X1), and CSEE(X2 1X1). Figure lb in Appendix B is the same as 

Figure la except that quadratic polynomials were used to smooth the CSEP*, 

CSEE*, CSEP, and CSEE estimates. Figures 2a and 2b in Appendix B are 

analogous to Figures la and lb except that they compare the 

CSEP*[X(Y4) IX*(Y3)], CSEMP*[X(Y4) IX*(Y3)], and CSEE*[X(Y4) IX*(Y3)] 

estimates with the CSEP(X11X2), CSEMP(X11X2), and CSEE(X11X2) estimates.

The CSEMP estimates also were compared to the CSEM estimates computed 

by the difference method (Thorndike, 1951) and the ANOVA method (Feldt et. 

al., 1985) using the same intervals of three score points that were used to 

compute the CSEMP estimates. Figure 3a is a graph of the 

CSEMP*[X(Y2)IX*(Y1)], the F-CSEM(E 1X1), the T-CSEM(E 1X1) estimates. 

Figure 3b is the same as Figure 3a except that the T-CSEM(E 1X1) estimates 

have been smoothed using a quadratic polynomial. Figures 4a and 4b are 

analogous to Figures 3a and 3b except that Figures 4a and 4b compare the 

CSEMP*[X(Y4) I X*(Y3)] estimates to the F-CSEM(E IX2) and T-CSEM(E IX2) 

estimates.

Discussion

The primary purpose of the present study was to evaluate the accuracy of 

the step-up procedure. How well the stepped-up half-length test estimates: 

CSEP*, CSEMP*, and CSEE*, approximate the full-length test estimates: CSEP,
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CSEMP, and CSEE, can be seen in Figures 1 and 2. These figures indicate that 

the step-up procedure works very well for the CSEMP, fairly well for the CSEP, 

and less well for the CSEE.

The secondary purpose of this paper was to compare the stepped-up half- 

length test estimate, CSEMP*, with the Feldt et. al (1985) and the Thorndike 

(1951) estimates of the CSEM, namely, F-CSEM andT-CSEM, respectively. 

Figures 3 and 4 show that the T-CSEM tends to be less than both the F-CSEM 

and the CSEMP*. Figures 3 and 4 also show that the F-CSEM tends to be less 

than the CSEMP* at both ends of the score scale but slightly greater than the 

CSEMP* in the middle of the score scale. These latter results agree with those 

found by Woodruff (1990). Because the average CSEMP equals the average 

CSEM, these results suggest that the T-CSEM is generally underestimating the 

CSEM, and that the F-CSEM may be slightly underestimating the CSEM at the 

ends of the score scale, but on average the F-CSEM appears closer to the 

CSEM than the T-CSEM.

Finally, all of the half-length and full-length test scores in the present study 

had unimodal approximately symmetrical distributions so the results reported 

here do not necessarily generalize to other types of test score distributions. 

However, Woodruff (1990) does report some limited results for skewed test 

score distributions, and those results are similar to the ones reported here.
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Appendix A 

Derivations



To show that o{Tx, Ex2 1X1) = 0 first recall that XI = Tx + Exi and X2 = Tx + 

Exi are parallel measurements and that fi denotes expectation. The conditional 

covariance betweeen Tx and Exz given X I can be written as

g [Tx ,Ex2 I XI) = ^(TXEX2 I XI) -  fi[Tx I Xl)fi[Ex2 I XI). (Al)

Using the double expectation theorem (DeGroot, 1989, p 220) on the first term

on the right hand side of (Al) gives

cr(Tx , Ex2 I XI) = M T XEX2 I XI) I Tx ] -  ai[Tx  I XI)/i(EX2 I XI)

(A2)
= fj.[Tx fi{EX2 I Tx tX\)\-fi{Tx I Xl)n{EX2 I XI).

Making the assumption of linear experimental independence (Lord & Novick, 

1968, p 45) between Exz and XI and between Exi and (XI,  Tx) implies that

/x(Ex2 I XI) = 0 for all values of XI and (A3)

p[EX2 I X I,Tx ) = 0 for all values of ( X I , Tx ). (A4)

Substituting (A3) and (A4) into (A2) yields the desired result:

(7(Tx ,Ex2 1 X1> = ^ T x 0 )-^ (T x I X1)0 = 0.

To show that n[o{Ex2 1X1)] = î [o[Ex2 1 Tx)l note that by Theorem 2.6.2 of Lord 

& Novick (1968, p 35)

ff2(Ex2) = /4ct2(EX2 I X I)]+ c7>(EX2 I XI)] = /ilff2(EX2 I Tx )] + <T2[/i(EX2 I Tx )].

It follows from the assumption that Ex2 is linearly experimentally independent 

of both XI and Txthat fi[Exi 1X1) = ju(Ex2 l T*) = 0. Hence, the above becomes

<t2(EX2) = /4<r2(Ex2 I XI)] = nlff2[Ex2 I Tx )l.

11
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Appendix B 

Figures



Figure la.

Plot of the full-length CSEP(X2 [X I), CSEMP(X21XI), and CSEE(X2 |X1) against the stepped-up half-length 
CSEP*[X(Y2)|X*(Y1)1, CSEMP+[X (Y 2 )(X *^ !)],  and CSEE*[(X(Y2)|X*(Y1)].



Figure lb.

Plot of the full-length CSEP(X21XI), CSEMP(X21XI), and CSEE(X21XI) against the stepped-up half-length 
CSEP*[X(Y2) | X*(Y1)], CSEMP*[X(Y2) | X*(Y1)], and CSEE*(X(Y2) |X*(Y1)] with quadratic polynomial smoothing 
of the CSEP*, CSEE*, CSEP, and CSEE.
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| □  ____CSEMP*DC(Y4)1X*(Y3)] !

j  y  ____CSEMP(X1 |X2)

| O ____CSEE* [X(Y4) [ X*(Y3)]

! Z  ____CSEE(X11X2)

Figure 2a.

Plot of the full-length CSEP(X11X2), CSEMP(X11X2), and CSEEcXl | X2) against the stepped-up half-length 
CSEP*IX(Y4)|X*(Y3)J, CSEMP* [X(Y4)|X*(Y3)1, and CSEE*[X(Y4)|X*(Y3)].
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Figure 2b.

Plot of the full-length CSEPCXl | X2), CSEMPCX11X2), and CSEE(X11X2) against the stepped-up half-length 
CSEP*[X(Y4)|X*(Y3)], CSEMP*[X(Y4)|X*(Y3)], and CSEE*[X(Y4) |X*(Y3)J with quadratic polynomial smoothing of 
the CSEP*, CSEE*, CSEP, and CSEE.
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Plot of the stepped-up half-length CSEMP*[X(Y2) |X*(Y1)] against the Feldt et. al. (1985) ANOVA method 
estimate, F‘ CSEM(E|X1), and the Thorndike (1951) difference method estimate, T-CSEM(E|X1).
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Figure 3b.

Plot of the stepped-up half-length CSEMP*[X(Y2) |X*(Y1)1 against the Feldt et. al. (1985) ANOVA method 
F-CSEM(E | X I) and the Thorndike (1951) difference method T-CSEM(E |X1) with quadratic polynomial 
smoothing of the latter.
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B ___ CSEMP*(X(Y4) | X*(Y3)] I

X  ___ F-CSEM(E | X2) !

Y  T-CSEM(E|X2) |

Figure 4a.

Plot of the stepped-up half-length CSEMP*[X(Y4)|X*(Y3)1 against the Feldt et. al. (1985) ANOVA method 
estimate, F-CSEM(E |X2), and the Thorndike (1951) difference method estimate, T-CSEM(E |X2).



Figure 4b.

Plot of the stepped-up half-length CSEMP* [X(Y4)|X*(Y3)1 against the Feldt et. al. (1985) ANOVA method 
F-CSEM(E |X2) and the Thorndike (1951) difference method T-CSEM(E |X2) with quadratic ploynomial 
smoothing of the latter.
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