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Abstract

This paper presents a detailed description of maximum likelihood parameter estima

tion for item response models using the general EM algorithm. In this paper the models 

are specified using a univariate discrete latent ability variable. When the latent ability 

variable is discrete the distribution of the observed item responses is a finite mixture, and 

the EM algorithm for finite mixtures can be used. Maximum likelihood estimates of the 

item parameters and of the discrete probabilities of the latent ability distribution are given 

using the EM algorithm for finite mixtures. Results are presented in general for both di- 

chotomous and polytomous item response models. The relation between the EM estimates 

and Bock-Aitken marginal maximum likelihood estimates is discussed.





Estimation for Item Response Models using the 

EM Algorithm for Finite Mixtures

The purpose of this paper is to present a fairly simple and unified treatment of how 

the general EM algorithm can be used to obtain maximum likelihood estimates (MLEs) 

of both the item parameters and the probability distribution of the latent ability variable 

for item response models. The approach taken in this paper is to assume the latent ability 

variable being measured by the items is discrete. When the latent ability variable is discrete 

the distribution of the observed data is a finite mixture (Titterington, Smith, and Makov, 

1985). With a discrete latent ability variable the EM algorithm for finding maximum 

likelihood estimates for finite mixtures can be used (Dempster, Laird, and Rubin, 1977; 

Titterington, Smith, and Makov, 1985).

This paper clarifies previously established results using a finite mixture approach. A 

complete, self-contained description of maximum likelihood parameter estimates of item 

response models for dichotomous and polytomous items using the EM algorithm for finite 

mixtures is presented. The use of the finite mixture model allows a variety of previously 

disparate results to be consolidated using a single relatively simple approach that allows a 

straight-forward presentation with pedagogic value.

Versions of the results in this paper have been presented by others for a variety of 

specific item response models. Maximum likelihood estimates of item parameters using the 

EM algorithm have been presented for a variety of item response models for dichotomous 

items (Bock and Aitken, 1981; Thissen, 1982; Rigdon and Tsutakawa, 1983; Tsutakawa, 

1984; Bartholomew, 1987; Harwell, Baker, and Zwarts, 1988; Baker, 1992) and polytomous 

items (Thissen and Steinberg, 1984; Bartholomew, 1987; Muraki, 1992; Wilson and Adams, 

1993). The EM algorithm for finite mixtures has been applied in estimating parameters 

for the Rasch model by De Leeuw h  Verhelst (1986) and Follmann (1988). The maximum 

likelihood estimates of the probabilities of the discrete latent ability distribution presented 

here were given by Bock and Aitken (1981), Mislevy (1984), and Titterington, Smith, and 

Makov (1985).

The data to be modeled are the responses of i =  1 , . . . ,  N  examinees, randomly sam

pled from a population of examinees, to a fixed non-random set of j  =  1 , . . . ,  n items. The



responses of the N  examinees to the n items are contained in a n x TV matrix Y  made up 

of n x 1 column vectors y i , . . .  ,y*7. . . ,  yw  that contain the responses of the ith randomly 

sampled examinee to the n fixed items. The matrix Y  is given by

Y  =  [y i , . . .  ,y* , . . .  ,yiv] • (1)

The j th element of y * (the response of the ith randomly sampled examinee to item j )  is 

denoted . It is assumed that the set of responses to each item is finite. If the responses 

are dichotomous then the possible values of yij axe 0 and 1. If the responses are polytomous 

then the possible values of are taken to be the integers 0 ,1 , . . . ,  Lj — 1 (item j  has Lj 

response categories). In practical applications values of the polytomous items need not be 

integers or even ordered. Note that different items may have different numbers of response 

categories.

Associated with item j  is a set of Vj item parameters denoted by the i/j x 1 column 

vector, 6 j. The parameters for all n items are represented by A , the collection of all 6j 

column vectors, that is A  =  [6i, . . . ,  6 j1. . . ,  £n]. When the number of item response cate

gories is the same for every item (e.g., dichotomous items) then the number of parameters 

will typically be the same for every item so that v3 — v for all j .

In addition to the observed item responses, there is a realization of a latent ability 

random variable © for each randomly sampled examinee. Unlike the realization of the 

item responses, the realization of © for the ith randomly sampled examinee (denoted 0t) 

is not observed. The value 0, is sometimes referred to as the “ability” of the ith randomly 

sampled examinee. In this paper the term “latent variable” will typically be used in place 

of “ability.”

The latent random variable © is usually considered to be continuous. In this paper 

the latent variable is taken to be discrete, and estimation procedures are derived based on 

the discrete latent variable. This is opposed to deriving estimation procedures based on a 

continuous latent variable and then implementing approximations of those procedures with 

a discrete version of the continuous latent variable (e.g., Bock and Aitken, 1981; Muraki. 

1992). In this paper the approximation of the continuous latent variable with a discrete 

latent variable is done in the model specification. This allows straightforward application
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of the EM algorithm for finite mixtures.

The latent random variable 0  can take on m  known discrete values 9k,k  =  1 , . . . ,  m, 

with associated unknown probabilities 7Tk,k =  1 , . . . ,  m (a short discussion of choosing 

the value of m  is given in the Discussion section at the end of the paper). The values 

of 9k are chosen at the initiation of the estimation process and determine the scale of 

the latent variable. Typically the scale of the latent variable can only be known up to a 

linear transformation, so the model is invariant to a linear transformation of the 6k (along 

with an associated transformation of the item parameters). The m  x 1 column vector of 

latent probabilities is given by 7r =  (tti , . . . ,  7rm)t. The random variable © has a probability 

distribution defined over the population of examinees [Pr(© =  Ok | tt)] that can be denoted 

variously as

Pr(© =  9k | 7r) =  Pr(© =  9k | 7Tfc)

=  P{0k | =  p(9k | nk) =  7Tk . (2)

In this paper the latent random variable © is taken to be univariate. It is possible to 

generalize the formulas presented to the case of a multivariate ©. A multivariate © would 

greatly increase the computational effort required to compute estimates.

The EM Algorithm for Finite Mixtures

Let / ( y  | A ,tt )  be the probability distribution for the observed item responses (y is 

a vector of realizations of the item response random variables). When the latent variable 

is discrete / ( y  | A , 7r) is given by

TJX

/ ( y I A ,ir) = 2̂f(y,gk I A ,tt) 
k=1 
m

=  ( y  I &k< A ’ | A ,  7T)
k=1 
m

=  '5 2 f ( y  1 A )p(ek I *o 
k=l 
m

=  5 ^ / ( y  I 0jfc,A)7r*, (3)
k=l
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where / ( y ,  0 \ A,7t) is the joint probability distribution of the item responses and the 

latent variable, and / ( y | Ok, A ) is the conditional probability distribution of the item 

responses for examinees with a fixed value of the latent variable Ok- The third and fourth 

lines of Equation 3 are obtained by using the equalities

/ ( y  I A , tt) =  / ( y  | Ok, A ) , (4)

and

p(0k | A,7r) =  p(0k | 7T) -  TTjt . (5)

Equation 4 follows from the assumption made in item response models that conditioned 

on the latent variable © the probability of an examinee’s responses to n items does not 

depend on the probability distribution of the latent variable in the population of examinees. 

Equation 5 follows from the fact that the probability distribution of © in the population 

of examinees does not depend on the item parameters for the n items.

The expression for / ( y  | A,7t) in Equation 3 is a finite mixture (Titterington, Smith, 

and Makov, 1985). That is, from the last fine in Equation 3 it can be seen that / ( y  | A , 7r) 

is a sum of component densities / ( y  | Ok, A ) with associated mixing weights 7r̂ .

The EM algorithm for finding maximum likelihood estimates of the parameters of a 

finite mixture is described by Dempster, Laird, and Rubin (1977, section 4.3), and Tit

terington, Smith, and Makov (1985, section 4.3.2). The presentation of the EM algorithm 

for finite mixtures in this paper uses somewhat different notation than that used in those 

presentations. Dempster, Laird, and Rubin (1977) and Titterington, Smith, and Makov 

(1985) use an indicator vector z* in place of where zj is of length m with a one in the 

position indicating the category of the latent variable for examinee i and zeros elsewhere. 

The present notation is more consistent with notation used in the psychometric literature.

The observed data are ( y i , . . . ,  yjv), the missing data are (01}. . . ,  On ), and the com

plete data is [(yi, 0i), • • •, (yn , 0jv)]- The complete data likelihood for the sample is

N

I I / ^ I A , * ) ,  (6)
2 =  1
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where f{yi,O i | A,7t) is the complete data likelihood for examinee i. The observed data 

likelihood for the sample is

N  N  m

n / ( y » i  * > * • ) = n E  / ( y i , 0 fc | A,7t) ,  (7)
i=1 i=l k— 1

where /(y*  | A , n) is the observed data likelihood for examinee i. The EM algorithm uses 

the complete data likelihood to find values of the parameters A  and 7r which maximize 

the observed data likelihood (Dempster, Laird, and Rubin, 1977).

The general EM algorithm generates a sequence of estimates (A^s\ 7r̂ 5̂ ), 5 =  1,2 ,. . . ,  

given starting values ( A ^ ,  7r̂ 0 )̂. There are two steps in each iteration: the E step and 

the M step. In the E step the conditional expectation of the complete data log-likelihood is 

taken, where the conditional expectation is with respect to the conditional distribution of 

the missing data given the observed data and some fixed known values of the parameters. 

Let ©i be the random variable representing the latent variable for examinee i (0*, i — 

1 , . . . ,  N  are independent and identically distributed), and let ©  =  ( O i , . . . ,  On )- The 

conditional expectation evaluated at the E step for iteration s ,s  =  0 ,1,. . . ,  is

Q[(A,7r) I ( A (s),7T(s))] =  £©  jlo g  A . tt) | Y , A « * m } , (8)

where the expected value is over the conditional distribution of the missing data given 

the observed data and fixed known values of the parameters (A (s\7r^).  Equation 8 is 

the expression used in the E step o f the general EM algorithm, as it is the expectation 

of the complete data log likelihood. Complete data sufficient statistics (other than the 

observations themselves) are not used.

The M step finds values of A  and 7r that maximize the conditional expectation of 

the complete data log-likelihood. The M step at iteration s, s =  0 ,1 , . . . ,  finds (A,7t) =  

(A^s+1\ 7r(s+1)) to maximize Q[(A,7r) | ( A ^ , t t ^ ) ] .  The new estimates (A^s+1\ 7r^+1 )̂ 

produced in the M step at iteration s are used in the E step at iteration s +  1. Iterations 

continue until convergence is obtained.

The expectation in Equation 8 can be written as
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E q { log
N

T [ f M  I A 7̂r)
.1=1

Y, A (s),7T(s)|

= ^ © | ^ lo g [ /(y i ,0 i  I A , tt)] I Y, A (s),7T(s)| 

= ^ £ ? e i{log[/(yi,^ | A , 7r)] | yi? A (s), tt(5)}

= 'Y2 '52 {log[f{yi,0k | A ,7r)]p(0* | yi3 A (s),7r(s))}
i—1 /c=l 

m  iV

=  ^ ] ^ { l o g [ / ( y i A  | A,7r)]p(0fc I y*5 A (s) , tt(s)) } ,  (9)
fc=li=1

where p(0fc | y ,̂ A^s\ 7r^) is the conditional probability that 0* =  Ok given fixed known 

values yi, A^s\ and 7r̂ s\ Note that log[/(yi,#i | A,7t)] is simply treated as a function of 

the discrete random variable 0* with respect to which its expectation is being taken. That 

is why in the first three lines of Equation 9 the realization of the latent random variable 

Si for the ith randomly sampled examinee is denoted Oi, whereas in the last two lines, 

where the conditional expectation has been made explicit, the Oi (the unknown realization 

of the latent variable for examinee i) are changed to Ok (the known values of the latent 

variable that could be realized for an examinee) in accordance with the expectation over 

the discrete distribution of the latent random variable. It should be noted that A  and tz 

are free unknown quantities for which estimates are found in the M step, whereas A ^  

and are fixed known quantities that have been computed at step s — 1.

Estimation of A  and ir can be simplified by separating Equation 9 into two additive 

terms with the first depending only on A  and the second depending only on 7r. In this 

way the derivative of the first term can be taken with respect to A , the result set to zero 

and solved for A . Similarly, the derivative of the second term can be taken with respect 

to 7Tj the result set to zero and solved for 7r. Consequently, M step estimates can be 

calculated separately for A  and tt. The estimates of 7r are easy to compute (a closed- 

form solution exists). The computation of estimates of A  will typically require iterative 

numerical methods.
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To separate Equation 9 into one part depending only on A  and one part depending 

only on 7r note that using Equations 4 and 5 (substituting y* for y)

/ ( y * A  | A,7r) =  / (y t  | 0*, A,7r)p(0jt | A , tr)

=  / ( y i  |0fcjA)7rfc. (10)

Substituting Equation 10 into Equation 9 gives

m  N

^ ^ { l o g [ / ( y i A  I A,7r)Jp(0fc | y i} A (5),7t(s))}
A:=l i = l

m N

-  I 9k} A )7rfc]p(̂ fc I yi, A (s),7T(s))}  . (11)
k = 1 t = l

The right side of Equation 11 can be written as

m  N

X ^ X ^ logL^yi I 8k,b)\p(8k I y<, A w ,jtw )}
A;=l i = l

m N

+ ̂ ^ { l ° g (7 r k)p(6k I y<, A (s),7T(s))} . (12) 
fc=l1=1

The first term in Equation 12 involves only A , and the second term in Equation 12 involves 

only 7r (all other terms, including Ok, are constants)* The first term in Equation 12 will 

be denoted by

m N

0(A) = E { M / ( y i  I 0k, A)lp(0fc I y,, A (s), 7T(s)) } , (13)
fc=l 1=1

and the second term in Equation 12 will be denoted

m  N

=  Y l Y l ^ og^ k^ ek i yij A (s )>7r(s)) } -  ( i4 )
k -l i=l

In the E step at iteration s ,s  — 0 ,1 , . . . ,  the m N (m categories of the latent variable 

for each of N  examinees) conditional probabilities p(0k | Yi, A^s\ 7r̂ s )̂ are computed using 

the values of A ^  and t t^  computed in the M step at iteration s — 1, or in the case of 

s =  0 the starting values. Note that for the first iteration (s=0) of the EM algorithm,



the values of p(0k \ yi, can be specified directly instead of specifying a

and 7r(°) and computing p(0k \ yt, A^°\ 7r̂ 0 )̂. The values of p(0k | y i, A ^ , 7 t ^ )  are then 

substituted into Equations 13 and 14 at iteration s, and the M step at iteration s consists 

of two parts: (1) finding values of A  that maximizes <£(A) [these will be A^s+1 ]̂, and (2) 

finding values of 7r that maximize V?(7r) [these will be 7r^+1 ]̂.

Using the definition of conditional probability, the probabilities p($k \ y i} A^s ,̂ 7r̂ 5̂ ) 

that are computed in the E step can be expressed as

p(9k I y  A<*> »<*>) = f { y i ' 9kl A W ,tW )’ j f ( y t  |AW,irW)
}{yu 9k | A (s),7t(s>)

E I L i / f o A -  I AW.wW)

_  /(yi I Qk, Aw , 4 s>)p(gt I A (s)>*kS))

X*Li/(y< I ^ , A w ,i r r )p f t ’ I a w ,4 ^ )

=  / ( y « i ^ A W ) ^  , (15)

where 7rĴ  is the kth element of 7r^ .̂ The subscript kf on the right side of Equation 15 is 

used in sums over all possible values of the latent variable, whereas the subscript k denotes a 

specific value of the latent variable. The final result in Equation 15 for p{9k \ y i , A ^ , 7r^) 

is an application of Bayes Theorem. Equation 15 is used for the E step computation. Note 

that Equation 15 applies for any item response model.

Details of the EM algorithm for calculating estimates of the item parameters and 

latent variable distribution for item response models with dichotomous and polytomous 

items are presented in the following sections.

Computing Item Parameter Estimates for Dichotomous Items

This section presents details of the EM algorithm for computing item parameter es

timates for dichotomous item response models (where Lj =  2 for all j ) .  The two possible 

responses to each item are scored 0 (incorrect) and 1 (correct).

For dichotomous items, Equation 13 can be written in terms of item response functions 

for each item. The item response function for item j  is a function of a value of the latent 

variable and the item parameters associated with item j . The item response function gives
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the probability of an examinee with latent variable value 9 answering item j  correctly, 

and will be denoted P (0 , 6j). The probability of an examinee with a latent variable value 

of 9 answering item j  incorrectly is Q (9,6j) =  1 — P (9 ,6 j). Examples of item response 

functions are normal and logistic ogives (Lord, 1980).

For item j  with item parameters 6j and randomly sampled examinee i with ability 

value 9k the probability of item response yij is given by

f ( y a  I Ok,6j) =  P( 0k, Sj T’ Q i h , . (16)

It is assumed that conditioned on the value of the latent variable for the examinee, the 

examinee’s responses to the items are mutually independent (this is the assumption of 

local independence). Under local independence f ( y i  | 9k, A )  can be written as

f (yi I ek,A) = n  f(ytJ I ek,Si) = Y[P(ek,6j )y‘>Q(6k,6j )1- yi‘ .
j - 1 j =1

Equation 13 can be written using Equation 17 as

m N s r n -| v

(̂A) = E  S i  log II I $k' p(9k I yi> A<S>>,r<S)) }
k=l i=3  ̂ ^=1 J '
m  N  n 

fc=X i=l j —1
m n  f  r N  -j x

= E E  log[.P(0fc, <5j)] 'y yijp(9k | yi, A ( \ 7r̂  )̂ >
Li=i

m n s r N 1 'l
+ E E  log[Q(0fc,^ )] 5^(1 -Vij)p(0k  | y i5 A (s),7t(5)) I 

fc=i j =i  ̂ L*=i J J
r N

= E E i  lo&lp (9k,6j)] E VijiWk I y>. a (s),7r(!,))
Ar=l j = 1 i=l

r N

+E  E i log(w*>w  i y*>aw,»W)
m  n ,

- e e {
k = l j= l '

r N

log[Q(0fc,^j)] $2ytjP(0fc Iy i ’ A(5) 7̂r(s))
z—1

(17)

(18)



A simpler computational formula for Equation 18 can be obtained by using Equation 15 

to compute

4 S)= X > ( 0 *  i a «  * « )  =  E  . (19)

10

and

i=i E ? = i  / ( y i  I a w ) ^

■S’ - £w(*. I -£
i=i i=i Efc-=i / ( y i  I

(20)
Substituting Equations 19 and 20 into Equation 18 gives

m  n

0(A ) =  H  5 3 { 1°g[-p (^ -  5j) ]r$  +  log[<3(®fc. <5j)]("fcS) -  rjfc )} • (21)
k=\J=1

The quantity nj^ can be thought of as a provisional estimate of the number of examinees 

in the sample with ability value 0k. The quantity rjj? can be thought of as a provisional 

estimate of the number of examinees in the sample with ability value 0k who answer item 

j  correctly. Note the notational distinction that though n denotes the number of items 

on the test, the represent estimates of the number of examinees with specified ability 

value Ok at iteration s.
(s'! (5)The E step at iteration s consists of computing the values nk and r^k using values 

of A ^  and 7r^ computed in iteration s — 1 ( A ^  and 7rj^ are starting values used in 

iteration 0). In the M step at iteration s the values of nj^ and computed in the E step 

are substituted into Equation 21 and the value of A , namely A ^ +1\ that maximizes </>(A ) 

is found. Maximization methods such as Newton-Raphson (Dennis and Schnabel, 1983) 

involve computing the first and second partial derivatives of <£(A), which in turn involves 

computing the first and second derivatives of log [P( 0/e, <5j)] and \og[Q(0k, ^ ) ]  with respect 

to A. These derivatives can be quite complex depending on the form of P(0k,6j). Baker 

(1992) gives detailed derivations of these partial derivatives for various forms of P(0k , Sj). 

The details of computing the maximum in the M step will not be presented in this paper.

Computing an Estimate of the Latent Variable Distribution

This section present details of the EM algorithm for computing an estimate of 7r. 

The procedures presented in this section apply to any item response model for either 

dichotomous or polytomous items.
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Equation 14 can be written as

m  N

I y i? A (s) , tt(s))}
fe=ii=i 

m  N

=  ^ 2 lo&(nk)^2p{0k  | y i5 A (s),7t(5)).  (22)
fc=i z=i

fg\
The E step substitutes the values of n Kk from Equation 19 into equation 22 to obtain

m

iKw) =  J 2  los M n (ks} ■ (23)
fc= 1

The m 7Zk must sum to one because the 7r ,̂ fc =  1,. . .  , m, represent the probabilities

for the discrete random variable 0 . A Lagrange multiplier is used to maximize Equation

22 subject to the constraint that the sum to one. The function to maximize is

m. /  m

*(7r.A) = E  lo§(^Ks)+A (E  ̂  - 1
fc=l \A;=1 ■
m m

=  y ;  lpg(7rjfc)n£jj) +  A V  7Tfc -  A . (24)
fc=i fc=i

The partial derivatives of ^(tr, A) with respect to 7 are

^  =  ^ + A, (25)<77Tfc TTfc

for A: =  1 , . . . ,  m. The partial derivative of ^(7r, A) with respect to A is

OT(tt5A) ^  

fc=i

Setting Equation 25 equal to zero gives

niS) =  ~ A?rfc » (27)

for k =  1 ,. . .  ,m . Summing both sides of Equation 27 over k gives

m m
I > * ) = - A5 > *  = - A- (28)
*=1 /fc=l



because setting Equation 26 equal to zero implies that Ylk =  1- Substituting the value 

for —A given by Equation 28 into Equation 27 gives

m
nkS) =  . (29)

k = 1

Solving Equation 29 for tt̂  gives values of 7r̂ 5+1  ̂ for iteration s of the EM algorithm. The 

estimates of given by Equation 29 are

Xs)

12

n7r(*+i) _ ___________
k 2̂ k' = 1 Uk'

kN

i N
= I y i , A {s\ n {s))

i=i

(30)
N  h E T '= i f ( y i \ 6 k ' ,A M ) n i s?

Going from the second to the third line of Equation 30 follows from the fact that

m

1yx>a(s)V s)) = i- (31)
fc'=i

The m  values of 7r̂ s+1  ̂ are the new estimates of Hk computed at iteration s. These values 

are used in the E step at iteration s +  1. The values of 1Xk given by Equation 30 are the 

same as those presented in Bock and Aitken (1981), Mislevy (1984), and Titterington, 

Smith, and Makov (1985).

The values of 7r|.5+1  ̂ for the final iteration of the EM algorithm (when convergence is 

achieved) are not estimates of a posterior distribution for 0 . Rather, they are maximum 

likelihood estimates of the marginal distribution of the discrete random variable 0  defined 

over the population of examinees.

After the final EM iteration the latent variable scale for most item response models 

can be set by linearly transforming the values of Ok so that the mean and variance of the 

latent variable distribution are equal to specified values. The item parameters would also 

need to be transformed to be on the same scale.
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To summarize the general EM algorithm for dichotomous item response models, the

This section presents details of the EM algorithm for computing item parameter esti

mates for polytomous items. The Lj possible responses to item j  are scored 0 ,1 , . . . ,  Lj - 1 .

Equation 13 can be written in terms of item category response functions for each item. 

The item category response functions for item j  axe functions of the latent variable and 

the item parameters for item j . The item category response functions give the probability 

that an examinee with latent variable value 0 will respond in item response category I 

of item j . The item category response functions for item j  will be denoted Pi(0,6j), 

I =  0 ,1 , . . . ,  Lj — 1, where Pi(0,6j) is the item category response function for the response 

category corresponding to item score 1.

For item j  with item parameters 6j and randomly sampled examinee i with ability 

value Ok the probability of item response y%j is given by

1=0

where , I =  0 ,1 , . . . ,  Lj — 1 is equal to 1 if %/ij ~  I and zero otherwise.

Under local independence / ( y i  | Ok, A )  can be written using Equation 32 as

E step at iteration s consists of computing the and the r^) as given in Equations 19 

and 20, and the M step at iteration 5 consists of finding estimates A^s+1) that maximize 

Equation 21 and computing the ^ s+1  ̂ as given in Equation 30.

C om puting  Item  P aram eter E stim ates for P o ly tom ou s Item s

f(Vij \Bk, 6 j ) =  n (32)

n n 1
/(y« ! 6k, A ) = f l / ( j / y  | 9k, Sj) =) = n n m ^ - > .  (3 3 )

j=i 1=0

Equation 13 can be written using Equation 33 as

<£(A )  =  fiVij I Oh, )  p i f i k  | y i ,  A ( s ) , t t ( s } )

m N n Lj — \

= £ £ £ £  {log[P iiB ^ S jf^ ^ lp iB k  | y 4, A W , * « ) }
k— 1 i= 1 j=l l~0

£ £ £  \og[Pl(6k, &,)] i=l}P(ek I yi, A (s>, 5T(s)) (34)



Equation 34 can be written as

14

m n Lj —1

4>(A ) =  £  E  E  « * ) ]» $ ,  (35)
k=lj= l 1=0

where

N
r W _ y - :  - , e I A W ^(.)) -  y '  I{vo=i} /(y i  I fo , A ^ f r ^
J ’ ] ^ E ? =1/ ( y . l ^ A < s > ) ^

(s) (5)Note that the sum of rj-fcZ over item response categories equals nk :

E ^ = E f : W o p ( « * i y ^ w , ww )
j = o  J = 0  i = l

L i - l

(36)

p{6k I y,, A (s,,7T(s)) ] T  llva=0
1=0

= E2 = 1

= E ^ *  I Vi-A(s).^ (s)) = "iS> • (37)
1 =  1

The can be thought of as provisional estimates of the number of examinees in the 

sample with ability value 6k who responded in category I of item j .  The nkl as before, 

may be considered provisional estimates of the number of examinees with ability value 

9k, k -  1

The E step at iteration s consists of computing the values of and nj^ using 

values of A ^  and 7rj  ̂ computed in iteration s — 1 ( A ^  and 7r^ are starting values 

used in iteration 0). In the M step at iteration s the values of nj^ computed in the E 

step are substituted into Equation 30 to obtain the estimates of 7r£5\ and the values of 

computed in the E step are substituted into Equation 35 and the value of A , namely 

A ( s+1), that maximizes (f>(A ) is found. As was the case for dichotomous items, this can 

involve computing the first and second partial derivatives of 0 (A ) ,  which in turn involves 

computing the first and second derivatives of log[Pj(0jt, 5j-)] with respect to A . For an 

example, see Muraki (1992) where details of the M step computation for the generalized 

partial credit model are presented.
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For the case of two response categories for every item {Lj =  2 for all j )  Equation 

35 is equivalent to Equation 21 with and r ^ Q =  nj^ — . Furthermore,
(s) J s )  . (s)

nk = rjh O + rjkV

Computing Bayes Modal Estimates using the EM Algorithm

The EM algorithm can be modified to produce the posterior mode of (A , 7r) (Demp

ster, Laird, and Rubin, 1977, pg. 6). If the log of the prior distribution of (A,7t) is 

G[(A,tt)] then to produce Bayesian modal estimates of A  and n  (instead of maximum 

likelihood estimates) Q[(A,7t) | (A^\7r^s )̂] +  G[(A,7r)] is maximized in the M step. Note 

that the E step calculation does not change. The M step calculation for 7r does not change 

if a uniform prior is used for 7r. Prior distributions for A  and 7r as contained in G[( A , 7r)] 

are not the same as the values A ^  and used to start the EM iterations. The values 

of A^°) and 7r(°) are starting values, not prior distributions. Mislevy (1986) and Tsu- 

takawa and Lin (1986) discusses Bayes modal estimation using the EM algorithm for the 

3-parameter and 2-paxameter logistic IRT models (see also Harwell and Baker, 1991).

Margined Maximum Likelihood Using the Bock-Aitken Algorithm

This section discusses the relationship between the EM algorithm given above and 

the algorithm for marginal maximum likelihood given by Bock and Aitken (1981). Bock 

and Aitken (1981) start with a continuous latent variable and use a discrete version of the 

latent variable for computational purposes (numerical quadrature). Here, a discrete latent 

variable is specified in the model.

A typical implementation of marginal maximum likelihood uses the marginal distri

bution of the observed variables as calculated using a specified distribution of the latent 

variable (although it is possible to estimate the distribution along with the item param

eters). Marginal maximum likelihood estimates of the item parameters are those that 

maximize the marginal likelihood of the observed variables. If / (y*,#i | A ,  7r*) is the 

joint likelihood of the observed and missing data for examinee i, and p{9k 17r£) specifies a 

marginal discrete distribution for the latent variable (with known probabilities 7t£), then 

the marginal likelihood for examinee i is
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/(Yi I A ) = 2̂f(yi,6k I A.tt*) 
k=1 
m

=  X ^ / ( y i  I A )p (e fc | tt£)
Jt=l
m

= £ / ( y i |efc, A K .  (38)
k=1

The log of the marginal likelihood for the whole sample is

N  N

log n /(y* I A ) =  ^ l o g [ / ( y i  | A)]
1=1 1=1

N  (  m  \

=  E log 1 E  f ( yi I 6k' A ) 77* f ' (39)
i=i U=i J

The log-likelihood in Equation 39 is the same as the observed data log-likelihood (the log 

of Equation 7) that is maximized by the EM algorithm with the exception that the 7rJ are 

treated as known values in Equation 39 whereas the are parameters to be estimated

in the EM algorithm presented previously. Thus, the EM algorithm could be used to

maximize the log-likelihood in Equation 39 using initial values 7rĴ  =  7rj* and setting 

7r[s+1) =  7 =  7r£ for all iterations. The M step for the parameters of the latent variable 

distribution would not be performed; rather the same values of 7rj  ̂ would be used for 

every iteration.

The description of the Bock-Ait ken algorithm presented here follows that of Harwell, 

Baker, and Zwarts (1988). The maximum value of the log-likelihood in Equation 39 as a 

function of A  will occur at a value of A  for which the derivative of Equation 39 is equal 

to zero. The maximum likelihood estimates of the item parameters are found by solving 

the system of equations given by setting the derivatives of Equation 39 with respect to 

the item parameters equal to zero. The derivative of the log-likelihood (Equation 39) with 

respect to 6rj (the r-th item parameter for item j )  is
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A  d log (/(y , | A )] A  1 d f{y i  | A )
2L, as 2 - ,
i= 1 dsn  f r {  f(y*  I A ) dsn

d f(y i  | 0fc, A)tt£

£ £  / ( y i  I A )  S  S«ri

=  y ' ___ Is____ y '  g / (y»  I g* .A )  ,
& / ( y < | A ) £  aa* 1 J

Using the equality

d f(y i  | 6k, A )  <91og(/(yt | 9k, A )]
dSTj dSrj

/ ( y i | 0 * , A ) ,  (41)

Equation 40 can be written as

A  9iog[/(yi I A)] A  /(y j I Qk,A)Kk A  diog[/(yi 16k, a )]
S  Mrj ^  /(Yi I A) dsrj

/ (y i  I A )ttJ__ ^  aiog[/(yi | flfc, A)]_  j i j i  i pfc?

E!T=i/(y< 10f=.A)7ri ^

=  E p (efc |yi .A . ^ * ) E
S log [/(y i I 6k, A )]

-  dSrii=l fc = l rj
m AT

=  £ £  dl0Si- » S ] 6 k ,A )]P(0k I yii A ,7r* ) . (42)
fc=l 1=1 rj'

Equation 15 (with A ^  replaced by A ) is used in going from the second to third line in 

Equation 42.

The item parameter estimates that are computed in the M step of the EM algorithm 

are the solutions to a system of equations that results from setting the derivatives of 

Equation 13, with respect to the item parameters, equal to zero. The derivative of Equation 

13 with respect to 6rj  is

| y „ A « ^ ) .  (43)
k —1 i= 1 r j

Equations 43 and 42 are identical with the exception that in Equation 43 A ^  is used in 

place of A  and 7r̂ s  ̂ is used in place of tz* in the function p . This distinction can have a
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significant effect on the computational effort needed to solve the system of equations. In 

Equation 43 the item parameters that are being solved for only appear in the derivative 

(the first term in the product inside the sums), but not in the function p (where A ^  is 

treated as a constant). In Equation 42 the item parameters appear in both the derivative 

and the function p. It is usually the case that the derivative in Equation 43 will depend 

only on the item parameters for item j  (and consequently Equation 43 will depend only 

on the item parameters for item j ) .  Consequently, in the EM algorithm the parameter 

estimates for each item can be solved for separately. In contrast, Equation 42 will depend 

on the parameters for all items —  not just the parameters for item j .  The computationally 

simpler approach of separately solving for the parameters of each individual item cannot 

be used with Equation 42. The difference between using Equation 42 versus Equation 

43 for estimating the item parameters is illustrated by Tanner (1996, Section 4.1) for the 

two-parameter logistic item response model.

Marginal maximum likelihood estimates that are solutions to the system of equations 

given by setting Equation 42 equal to zero for all item parameters have been presented for 

some specific item response models. Thissen (1982) presented marginal maximum likeli

hood estimates of the item parameters for the one-parameter logistic model for dichotomous 

items. Bock and Lieberman (1970) presented marginal maximum likelihood estimates for 

a two-parameter normal ogive model for dichotomous items, but their solution is only 

computationally practical for a small number of items.

The computational complexity of estimates based on using Equation 42 led Bock and 

Aitken (1981) to suggest a two-step algorithm for computing marginal maximum likelihood 

estimates of the item parameters. Iteration s (s =  0 ,1 , . . . )  of the Bock-Aitken algorithm 

consists of two steps. In the first step of the Bock-Ait ken algorithm at iteration s item 

parameters computed at iteration 5 — 1 ( A ^ ,  where A ^  are starting values) are used 

to calculate the values of p($k | y*, A ^ ,  7r*) using Equation 15. In the second step at 

iteration s item parameters that are the solution of

E E a io g l /S  lg* ^ w  =  0 (44)
z =  l k =  l

are found (A^s+1 )̂. It is easier to solve for A  in Equation 44 than in Equation 42 because



Equation 42 contains A  as a part of the function p, whereas there is no A  in the function 

p in Equation 44 ( A ^  in the function p in Equation 44 is known). The values of A^s+1  ̂

found in iteration s are used in iteration s +  1 to compute p(0k \ yi, A^s+1\ 7r*). This 

two-step process continues until the item parameters converge.

The left side of Equation 44 is equal to Equation 43 with 7r* substituted for 7t̂ 5\ so the 

item parameters that are the solution to Equation 44 axe the same as the item parameters 

that maximize Equation 13 (with 7r* substituted for 7r^). Consequently, the Bock-Aitken 

algorithm is identical to the EM algorithm where the parameters of the latent variable 

distribution, namely 7r, are specified and not estimated. The first step of the Bock-Aitken 

algorithm corresponds to the E step of the EM algorithm, and the second step of the 

Bock-Aitken algorithm corresponds to the M step of the EM algorithm with the exception 

that 7r =  7r* is fixed and need not be estimated.

This section has discussed marginal maximum likelihood estimates for the case where 

the latent variable distribution is assumed known. It is also possible to estimate the 

latent variable probabilities along with the item parameters. In this case the Bock-Aitken 

algorithm is the same as the EM algorithm described in previous sections (where both 

7r and A  were estimated). This last statement assumes that both methods start with 

the same 9 k values (nodes in numerical quadrature), and the same 7rj  ̂ values (weights in 

numerical quadrature).

Summary

This paper presents detailed derivations of established results using a finite mixture 

approach. Estimates of parameters for item response models using the EM algorithm were 

derived treating the latent ability variable as discrete, in which case the distribution of 

observed item responses is a finite mixture. Maximum likelihood estimates of the item 

parameters and the latent variable distribution were obtained by a straightforward appli

cation of the general EM algorithm for finite mixtures. General results were presented for 

dichotomous item response models and for polytomous item response models. A closed- 

form solution for estimates of the latent ability distribution was given that applies to any 

item response model. Estimates for the item parameters will depend on the specific form 

of the item response functions, and will usually require iterative numerical procedures.
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Finally, it was shown that the EM algorithm is the same as the Bock-Aitken algorithm for 

marginal maximum likelihood estimation of the item parameters.

Discussion

This paper focused on the case of a univariate real-valued latent variable. It is straight

forward to extend the estimation procedures presented for dichotomous and polytomous 

items to other cases of interest. One example is the case of latent class models where the 

discrete latent variable is nominal. Everitt (1984) and Bartholomew (1987) discuss using 

the EM algorithm to obtain maximum likelihood estimates for latent class models. Another 

example is the case of a multivariate latent variable. It is straightforward to generalize 

the formulas presented in this paper for a discrete univariate latent variable to a discrete 

multivariate latent variable although the larger number of categories for a multivariate 

discrete latent variable could greatly increase the amount of computation required.

Besides the estimates of the item parameters and the discrete ability distribution that 

have been presented, an estimate of each examinee’s ability may also be of interest. An 

empirical Bayes approach to obtaining an estimate of the ability value for the ith examinee 

is to use the distribution of the latent ability variable given by Equation 15 with the values 

of A ^  and given by the final iteration of the EM algorithm (Tsutakawa and Soltys, 

1988; Bock and Aitken, 1981; Bernardo and Smith, 1994). Then the mean or mode of the 

distribution p($k | y i, A ^ } 7r^), k =  1 , . . .  , m, can be used as an estimate of the ability 

of examinee i. These estimates are not true Bayesian estimates. A true Bayesian analysis 

would be based on the distribution p(0k | yi) with the item parameters marginalized out 

(see Equation 5 in Tsutakawa and Soltys, 1988). Tsutakawa and Soltys (1988) present an 

approximation to a Bayesian solution for dichotomous item response models.

In this paper the latent ability variable has been taken to be discrete in the model 

specification. It may be more natural to specify a continuous distribution for the latent 

ability variable. For the Rasch model it has been shown that as long as enough levels 

of the latent ability variable are used ( [n +  2]/2 if n is even or [n +  l ] /2  if n is odd, 

where n is the number of items) then the class of models using a discrete latent ability 

variable is the same as the class of models using a continuous ability latent variable, and the 

maximum likelihood estimates of the item parameters using the EM algorithm described
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in this paper are asymptotically identical to conditional maximum likelihood estimates 

of the item parameters (De Leeuw h  Verhelst, 1986; Follmann, 1988; Lindsay, Clogg, & 

Grego, 1991).

If an estimate of a continuous ability is needed, then various methods (e.g., kernel 

estimators) may be used to fit a continuous distribution to the final estimates of the 

(Tapia and Thompson, 1978). If the latent ability variable is assumed to be continuous 

and in the E step of the general EM algorithm the rectangle rule is used to compute the 

integral of the latent ability variable, then that method is computationally similar to the 

procedure presented here that assumes a discrete latent ability variable with the proviso 

that the 9k values are equally spaced.

It seems likely that as long as enough levels of a discrete latent variable are used 

not much, if anything, will be lost by assuming a discrete rather than a continuous latent 

variable. When a real-valued discrete latent variable is used, one needs to decide on the 

number of levels to use and the values of the latent variable to use at each level (a similar 

decision would need to be made when assuming a continuous latent variable if numerical 

quadrature were employed). As noted above some theoretical results on the number of 

levels needed are available for the Rasch model.

Results pertaining to the estimation of histograms for observed continuous random 

variables may have some value in obtaining a rough estimate of the number of levels for the 

latent ability variable. Terrell and Scott (1985) propose (27V)1/ 3, or a convenient slightly 

larger integer, as the optimal numb.er of bins to use in constructing a histogram from 

continuous data. Alternatively, goodness of fit tests for various values of m, the number 

of ability levels, could be used to select a value of m  that best fits the data (Titterington, 

Smith, and Makov, 1985, pg. 150). Experience indicates that 20 levels of the latent 

variable are about the minimum number needed to give reasonable results for two and 

three parameter logistic models for dichotomous items.
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