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Abstract

It has long been a part of psychometric lore that the variance of children's scores 

on cognitive tests increases with age. This "increasing-variance phenomenon" was first 

observed on Binet's intelligence measures in the early 1900's. An important detail in this 

matter is the fact that developmental scales based on age or grade have served as the 

medium for demonstrating the increasing-variance phenomenon. Recently, 

developmental scales based on item response theory (IRT) have shown constant or 

decreasing variance of measures of achievement with increasing age. This discrepancy 

is of practical and theoretical importance. Conclusions about the effects of variables on 

growth in achievement will depend on the metric chosen. In this study, growth in the 

mean of a latent educational achievement variable is assumed to be a negatively- 

accelerated function of grade; within-grade variance is assumed to be constant across 

grade, and observed test scores are assumed to follow an IRT model. Under these 

assumptions, the variance of grade equivalent scores increases markedly. Perspective 

on this phenomenon is gained by examining longitudinal trends in centimeter and age 

equivalent measures of height.





Grade equivalent and IRT Representations of Growth

The use of item response theory as a model for cognitive test data has recently 

introduced some controversial discrepancies concerning trends in the variability of 

mental traits with age (Hoover, 1984a,b, Burket, 1984; 1988; Yen, 1988; Phillips and 

Clarizio, 1988a,b; Clemans, 1993). There is a strong, mutual reinforcement between the 

popular notion that variance of cognitive skills increases with age, and the fact that 

grade equivalent and Thurstonian scales have traditionally confirmed this trend. A 

trend of increasing variance is consistent with the common-sense notion that above- 

average students continue to develop at a faster rate than below average students. 

However, when IRT scales are constructed from the same or comparable data used to 

construct grade equivalent and Thurstonian scales, IRT variability remains constant or 

even decreases (Yen, 1986; Schulz, Shen, and Wright, 1990; Lee and Wright, 1992; Bock, 

1983).

Differences in the growth rate of mean or median achievement also exist between 

metrics. The defining characteristic of a grade equivalent scale is that median 

achievement in the norm group increases at a constant rate of one unit per year. 

Thurstonian and IRT scalings of educational achievement data generally show increases 

in the mean to be negatively accelerated with grade (Yen, 1986; Schulz, et alv 1990; Lee 

and Wright, 1992).

Differences in growth trends have practical importance in research on educational 

achievement. In a longitudinal study of the effects of schools and other higher-level 

variables on change in student's educational achievement, grade equivalent and IRT



metrics led to strikingly different representations of individual differences in growth 

trends among students (Seltzer, Frank and Bryk, 1994). These investigators concluded 

that choice of metric can influence decisions about the efficacy of educational programs.

The problem of choosing a scale for research on growth in educational 

achievement is complicated by the arbitrary nature of scales. Educational and cognitive 

tests do no more than order levels of cognitive performance. One cannot pose questions 

about trends in variability and rates of growth until test results are put on a metric scale. 

The only nonarbitrary criterion of a scale is that it preserve the ordering of performance 

in the test data. Two scales that are equally acceptable from this perspective can lead 

to opposite conclusions about trends in variability and rates of growth (Braun, 1988). 

Zwick (1992) gives an example in which a difference of increasing variance is converted 

to one of decreasing variance by an order-preserving transformation.

One aim of this paper is to show how differences in IRT and grade equivalent 

growth trends stem from differences in the scaling models. Yen (1986) and Schulz (1990) 

have pointed out that grade equivalent variance is bound to increase if an alternative 

order preserving metric shows a pattern of constant within-grade variance and 

negatively accelerated growth in the mean. To demonstrate this point here, growth 

trends of constant variability across grades and negatively accelerated growth in the 

mean on an IRT (theta) metric are assumed, and test data is assumed to fit a given IRT 

model (see Equation (1) in the following section). A grade equivalent scale is then 

constructed in order to illustrate the trend of increasing variability on the grade 

equivalent scale.
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In the standard procedure for constructing grade equivalent scales (Petersen, 

Kolen, and Hoover, 1989), grade equivalents have a one-to-one correspondence with true 

scores on grade-level tests administered to students within grade and with true scores 

on a scaling test administered to all students. Trends in the distribution of number 

correct scores on such tests will be examined in this study, but will not be used to 

construct the grade equivalent scale. Instead, thetas will be mapped directly into grade 

equivalent scores because there is a one-to-one correspondence between thetas and 

number correct true scores in the IRT model. The purpose of examining trends in 

number correct scores is to demonstrate their relationship to trends in the theta metric.

Two methods will be used to map IRT ability parameters directly to grade 

equivalents. One method uses quadratic regression, and is suitable when the growth in 

mean achievement on an IRT scale exhibits a simple quadratic trend, as will be assumed 

in this study. A more general, but less exact method, called integer-assignment, maps 

theta values to the most probable grade (integer, grade equivalent value), according to 

the relative density of the assumed within-grade theta distributions. The later method 

is considered more suitable when growth in the mean is not a simple quadratic function 

over grade. Both methods are expected to yield comparable results.

To add perspective on the meaning of growth trends in either metric, an analogy 

to growth in a physical characteristic, height, is developed. Growth in physical 

characteristics has long served as a model for growth in mental traits (Bloom, 1966; Bock, 

1989). As will be seen, centimeter measures of height, grouped by age, show trends of 

decreasing, as well as increasing variance with age and nonlinear rates of growth in the



mean. These trends provide a basis for interpreting similar trends in IRT measures of 

educational achievement. The analogy is extended further by mapping centimeter 

measures of height into age equivalent scores. The relationship between age equivalent 

and centimeter growth trends in height is comparable to the relationship between grade 

equivalent and IRT growth trends in educational achievement.

Methods

Assumptions

Let 0  represent a latent scale of achievement, and let the probability of a correct 

answer to a multiple choice achievement test item be the following logistic function of 

0:

P(0) = 0.2 + ______ ^ ______ . (1)
1 +exp(1.7(b-0))

b is the 0-coordinate of the point of inflection of the regression line of P(0) on 0 for the 

given item.

Let) represent grade, and let the distribution of student achievement within grade 

j  be N (HjQ,OjQ2), where

= -.133 + I 5- 7' ~ J  ;=1,2,...,12. <2>
30 J

and oye2=l for all j. The within-grade mean and standard deviation of 0  are plotted by 

grade in Figure 1. The negatively accelerated rate of growth in the mean in Equation 

(2) is a reasonable approximation to observed trends (Yen, 1986; Schulz, et al., 1990; Lee, 

et al., 1992). Constant within-grade variance across grades is also an approximation to
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reported IRT trends (Schulz, et al., 1990; Lee, et al., 1992). Marked decreases in IRT 

variability over grade (Yen, 1986) are not taken into account here because they may have 

been due, in part, to problems with estimation procedures (Williams, et al., 1995).
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Figure 1. Hypothetical trends in the mean and standard deviation of a latent educational achievement variable 
(0 ). The dashed line shows linearity for purposes of comparison to the nonlinear trend in the mean.
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Test Specifications and Trends in Number Correct Scores

Grade-level Tests. Let the grade-level test for grade j  consist of n items with b=}ijQ, 

let P (̂0) be the probability that a student with 0=0 gets a grade-j item correct, let S 

represent the number correct score on the grade-level test, and let /(01 j) represent the



theta density function within grade j. The within-grade mean of S is constant across 

grades:

6

E[S|/]= = ps = n JPj(e)/(0|;')de . (3)

Constancy in the \ijS over grades is due, in this case, to the relative difficulty of the 

grade-level tests being the same across grades (b=^0), and to the assumption that the 

within-grade distributions of 0  are identical across grades except for the mean. The 

within-grade variance of S is also constant across grades:

Var(S [;) = ajs  = cts = E0 [Var(S|6)] + VarQ(E[S|0]) (4)

where

Var0 (E[S|0]) = J (n P ;.(0))2/(0|;)de - p2(S) <5>

and

E0 [Var(S |6)] = n j P.(6)( 1 -P/0))/(0|;)d0 . <6>

OyS2 is constant across grades for the same reasons pis is constant across grades. Given 

the assumption of model fit, normally distributed 0  within grade, and b=pt(Q I j) for 

grade-j items, the trend in versus grade will have the same sign as the trend in Gy0 

versus grade. Both trends have zero slope in the present case due to the defined 

condition OjQ=1 for all j.



Scaling Test. Let the scaling test consist of k items from each of the grade-level 

tests, and let M represent the number right score on the scaling test. The within-grade 

mean of M is:

00 12

E[M\j] = P;.M = k j  E p ;(0)]f(0|y)de . <7>
-00 j~  1

The within-grade variance of M, GjM2, follows the general form of Equation (4), where

00 12

VarQ(E[M;.|0]) = J  [ £  (fcP;.(0))2]f(0|;)d0 - \x]M <8>
-00 }  =  1

and

00 12

E0 [Var(M;. 10)] = fc J  [ £  P f t ) , # Ii)d0 . <9>
j  = 1

Figure 2 shows a plot of and <3-^ when k= 10. There is a slight S-shape in the 

plot of }ijM, and a bell-shape to the trend of OyM2. Both trends are connected to the fact 

that the difference between the number correct scores of any given pair of students is 

relatively small when a test is very easy or very hard for both students. Students for 

whom a given test is very easy or very hard are said to be performing near the test's 

ceiling or floor. Floor and ceiling effects of the present scaling test include the apparent 

shrinkage in within-grade variability at upper and lower grades, and the decline in the 

difference between means of adjacent grade groups at upper and lower grades. With 

the help of such effects, and the right set of test specifications, one can create virtually 

any trend in the distributions of number correct scores.
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Figure 2. The mean and standard deviation, by grade, of the number correct score on a hypothetical scaling 
test administered to all students (see text for test specifications).

Mapping IRT Values Into Grade Equivalents

Let G denote the grade-equivalent variable, let Hj(g) be the cumulative density of 

grade-equivalent scores within grade j, and let F̂ (0) be the cumulative density of 0  

within grade j. Because true scores on the scaling test are a one-to-one function of 0 , 

and 0  is normally distributed within grade, H-(g) is defined for g=l,...,12, exactly as in 

the true score procedure (Petersen, et al., 1989) by



Hj(g) = F j^ e l/ 7), j f =g=l,2,...,12; y=l.... 1 2 .  (10)

That is, the grade-j percentile ranks of grade equivalent values g=l,...,12 are, respectively, 

the grade-j percentile ranks of the grade j' median 0s, where j'=l,...,12. The points 

labeled "Medians" in Figure 3 are consistent with Equation (10). These "median-by- 

definition" anchor points define j as the median grade-equivalent value for grade j if 0 

is mapped directly to G.

The use of interpolation between the median anchor points in Figure 3, to map

0  to G, is equivalent to mapping true scores on the grade-level tests to G as described 

by Petersen, et al., (1989). The procedures are equivalent because grade-level test true 

scores are one-to-one transforms of 0 .

Additional anchor points for mapping 0  to G are labeled "equal-density" in Figure 

3. These were computed as follows: Let 9-+ 5 represent the 0 for which f(0 I;) = f(0 I j+l). 

If the within-grade distribution of 0  is normal with variance constant across grade, then 

0y+ 5 = i)q)/2. That is, 0-+ 5 is exactly half-way between jiy0 and If within-

grade variances are not equal, but 0 is normally distributed within each grade, then 0-+ 5 

= (VV̂ -0 + Wy+i ^ +1)e)/(Wj-+Wy+1), where Wj and Wy+1 are the within-grade standard 

deviation of 0  for, respectively, grades; and j+ l. The open squares in Figure 3 represent 

the equal-density points. These have the coordinates (0̂ + $,g=j+.5), j= l,...,ll. From visual 

inspection, these points are in the same trend line as the median-by-definition anchor 

points.

Rather than interpolating between the anchor points in Figure 3, two analytical 

methods were used to map 0 into grade equivalents.
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Figure 3. Relationship between grade equivalent scores and achievement on the 0  metric. Coordinates of points 
designated 'medians' are the median grade equivalent and median 0  within grade. Coordinates of points 
designated 'equal density' are the lower median grade equivalent plus 0.5, and the 0  value that is equally 
likely to correspond to the lower or higher grade. The quadratic regression line was estimated using both 
'median' and 'equal density' points.

Mapping through Quadratic Regression. A quadratic regression of G on 0  was fit 

to the anchor points plotted in Figure 3. Median-by-definition anchor points, {}*jQ,g=j), 

and equal-density anchor points, (0-+ 5,g=/+.5), yielded identical regression equations. 

The regression equation was quadratic with positive acceleration:

G = 0.57 + 0.56 + O.O802 . (11)

This equation fit the points in Figure 3 very well (R2=.999). Let Equation (11) be



expressed in the following general form:

G = p0 ♦ me + p2e2 . (12)

Then the mean of G for any grade, j, is:

E[G|;] -  v jc  -  E[((30 + px9 + p202)|;]

= P0 + PiE[e|;l + p2E[62|;] (13)

= Po + M / e  + WVje + °ye) •

The last line of (13) follows from the identity a  e2 = E[02 1 j] - ftj02. By using a Taylor

series expansion, it can be shown that the grade-j variance of G is:

Cfc = E[G2 |;] -

11

= e [(P0 + P|0 - p2e2)2 1/] - n-c

-  2 P 2Oyg + O je (P ]  + 2 P 2p ;0 )

(14)

The grade-j median of G can be expressed as:

Med(G|;) = P2p;e + P,ji;0 + P0 (15)

Equations (11) and (14) exhibit the functional relationship between trends in grade 

equivalent and theta variance when the rate of increase in mean 0  is a negatively 

accelerated function of grade. First, Equation (11) shows that the regression of grade 

equivalents (G) on 0  will have a positive (32 coefficient (.08 in this case). Second,
ry

Equation (14) shows that if p2 is positive, grade equivalent variance (o-G ) is bound to 

increase more than theta variance (ĉ q2) (assuming there is no decrease in the mean of

i



© (fye)). It is conceivable that o ^ 2 could decrease if oy02 were to decrease enough to 

offset the magnitude of (32 and the magnitude of change in /̂-0. On the other hand, GyG2 

could increase even if there were a decrease in Oy0 .

The within-grade mean, median, and standard deviation of grade equivalents 

were computed using the results of Equations (11) to (15) and the a priori values of 

(Equation (2)) and <7y02=l for all j.

Mapping through Integer Assignment. In integer assignment mapping, the equal- 

density points on the 0  scale were boundaries for open intervals within which all thetas 

were mapped to the most probable grade. For example, thetas between 03+ 5 and 04+ 5 

were mapped to a grade (grade equivalent value) of 4. Thetas below 01+ 5 were mapped 

to a 1 (i.e., first grade). Thetas above 0n+ 5 were mapped to 12. These limits (1 and 12) 

on grade equivalent values were considered too restrictive for grades below 3 or above 

8. Grade equivalent distributions were therefore estimated only for grades 3 to 8.

For computing the within-grade mean and variance of grade equivalents, the 

weight assigned to a given integer (grade equivalent) was based on the area of the 

within-grade theta distribution over the interval mapped to the given integer. The 

median grade equivalent for grade j was computed as a continuous value using standard 

methods of interpolation.
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Results

Before describing the grade equivalent trends, it is important to evaluate and 

compare the performance of the mapping methods. Values for grade equivalent means, 

medians, and standard deviations by grade and mapping method are shown in Table 1. 

Both methods produced medians that were close to the value they would have had if 

the true score procedure of obtaining grade equivalents had been used.

TABLE 1

Grade equivalent score distributions by grade and method

13

Method of mapping thetas to grade equivalents

Integer-Assignment Quadratic Regression

Grade Median Mean
Std.
Dev. Median Mean

Std.
Dev.

1 1.2 1.2 .68
Not applicable

2 2.0 2.0 .85

3 3.0 3.0 1.1 2.9 3.0 1.0

4 4.0 4.1 1.2 3.9 4.0 1.2

5 5.0 5.1 1.3 4.9 5.0 1.3

6 6.0 6.1 1.4 6.0 6.1 1.4

7 7.0 7.1 1.5 7.1 7.2 1.5
8 8.0 8.1 1.6 8.2 8.2 1.7

9 9.2 9.2 1.7

10 10.1 10.2 1.8
Not applicable

11 11.0 11.1 1.9
12 11.8 11.8 2.0
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With integer assignment, the median for a given grade,;, was within .03 of the intended 

value, j; with quadratic regression, the difference was no larger than .2. The median 

trend plotted in Figure 4 is the intended, linear trend.

The mapping methods also agreed closely with each other. As shown in Table I, 

the standard deviations obtained by the method of integer-assignment were within .1 of 

those obtained by quadratic regress ion—the average absolute difference was only .04. 

Mean values were within .1 of each other, and median values within .2.
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Figure 4. Trends in the median and standard deviation of grade equivalent measures.

According to both methods of mapping, the within-grade variability of grade 

equivalent scores increased approximately 1.6-fold from grade 3 to 8. Over grades 1 to 

12, to which only the quadratic regression method of mapping was applied, the within-



grade standard deviation of grade equivalents increased approximately 3-fold, from .68
I

to 2.0. This trend is illustrated in Figure 4.

Height Analogy

Trends in Centimeter Measures

Height data were obtained from the Fels Longitudinal Growth Study (Wright 

State University School of Medicine, Division of Human Biology). The data consisted 

of the height in centimeters of 212 boys on whom a total of 6,605 measures of height 

were made between the ages of 2.75 and 18.7 years. After editing, the data included the 

height of 160 boys measured within .1 year of their 3rd through 18th birthdays. 

Longitudinal trends in the mean and standard deviation are plotted in Figure 5, and 

corresponding values are given in Table 2.
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Figure 5. Trends in the mean and variance of the height in centimeters. Solid lines are based on Fels data. 
Dashed lines are extrapolations for purpose of constructing age equivalent measures.



Certain phenomena that may be considered applicable to cognitive growth, seem 

to account for complex trends in both the mean and variability of height. A collective 

growth spurt appears to start at age 10 and last until about age 14. This accounts for 

positive acceleration in mean height from ages 10 to 14. It seems likely that individual 

differences in the onset of this growth spurt contribute to the large increase in variance 

over this same period. Variance in height is maximum at age 14 because some boys 

have not yet begun their growth spurt, while other boys have reached full adult height. 

After age 14, the rate of growth in the mean is negatively accelerated with age and 

variance decreases as late-starters catch up with those who have reached their maximum 

height.

Similarly, certain cognitive skills, such as reading, could exhibit a peak in within- 

grade variance during early grades due to large individual differences in the onset of 

development. Many parents teach their children to read two or three years earlier than 

they would otherwise learn in school This early advantage, however, does not 

necessarily persist into later primary grades, and thus, formal schooling could cause a 

decrease in variance of reading achievement, as measured by multiple choice test 

questions, over time. Other cognitive traits, such as mathematics skill, might not exhibit 

the same trends either because fewer parents teach their children mathematics or because 

the age at which achievement, as measured by multiple choice items, begins to level off 

might be much later for a skill like mathematics than for reading.

Trends in Age Equivalent Measures

Centimeter height was mapped to age equivalent height using the method of
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integer-assignment. This method required extrapolation of centimeter height data for 

ages 1, 2, and 19 to 25. In order to estimate points of equal density between adjacent 

ages, and to assign age-specific weights to age equivalent values (for computing age 

equivalent means, variances, and medians by age), centimeter height was assumed to be 

normally distributed at each age, with means and standard deviations shown in Table 2 

(extrapolated data is not shown). Heights below the equal density point for ages 1 and

2 were mapped to 1. Heights above the equal density point for ages 24 and 25 were 

mapped to 25.

TABLE 2

17

Distribution of height by age and metric

Age

Metric
Centimeters Age equivalents

Mean Std. Dev. Median Std. Dev.
3 95.4 3.4 3.0 .57
4 102.7 3.8 4.0 .61
5 109.7 4.3 5.0 .69
6 116.4 4.6 6.0 .76
7 122.7 5.0 7.0 .85
8 128.8 5.3 8.0 .95
9 134.5 5.5 9.0 1.0
10 139.8 5.8 10.0 1.1
11 145.0 6.0 11.0 1.1
12 150.5 6.5 12.0 1.1
13 157.3 7.5 13.0 1.2
14 164.7 7.9 14.0 1.8
15 171.2 7.4 15.1 3.0
16 175.1 6.7 16.1 3.6
17 177.1 6.5 17.1 3.8
18 178.1 6.5 18.0 3.9



Median age equivalent height was within .1 of the corresponding age, as shown 

in Table 2. As shown in Figure 6, growth in the median is practically linear with age, 

as expected. The standard deviation of age equivalent height increases slowly to age 13, 

then increases dramatically.
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Figure 6. Trends in the median and standard deviation of age equivalent measures of height.

Discrepancies between age equivalent and centimeter trends in variability are 

related to nonlinear growth in the mean (in centimeters). When growth in the 

centimeter mean is linear (ages 3 to 10), both metrics show about the same increase in 

standard deviation: the age equivalent standard deviation increases nearly two fold 

(5.8/3.4) as does the standard deviation in centimeters (1.1/.57). When growth in the 

centimeter mean is positively accelerated (ages 10 to 13), the standard deviation in age



equivalents increases less than the standard deviation in centimeters (1.2/1.1 versus 

7.5/5.8). When growth in the centimeter mean is negatively accelerated (ages 14 to 18), 

the standard deviation in age equivalents increases (1.8 to 3.9), even though the standard 

deviation in centimeters decreases (7.9 to 6.5).

Discussion

This paper provides a compelling demonstration of the arbitrary nature of growth 

trends in cognitive variables. Two metrics, both of which preserve the order of 

performance levels in test data, produced different pictures of cognitive growth. The 

differences were seen to arise strictly from differences in the scaling models. Time- 

indexed measures (by grade or age) will show an inflated rate of increase in variance 

over time relative to an alternative, order-preserving metric that shows negative 

acceleration in the conditional mean over time. From this demonstration, one should not 

expect growth trends in different metrics to look the same. Growth trends in different 

metrics mean different things. It falls to the investigator to carefully consider the 

meaning of scale units and to select the scale that gives growth trends the most useful 

meaning for the problem at hand.

The unit on the grade equivalent scale is defined by the indexing of performance 

levels on the test to grade levels. Performance levels are indexed to the grade and 

month of the school year at which the level of performance (on the test taken by the 

student) is typical. This indexing system conveys more meaning more clearly to parents 

and teachers of students, particularly at the elementary grades, than probably any other 

type of scale (Hoover, 1984a). It seems reasonable to suppose that trends in growth and
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variability on the scale may also have practical use in some contexts.

On other grounds, researchers may take exception to the fact that the grade 

equivalent method of indexing forces the median rate of growth in the norm group to 

be linear. Schulz (1990) argues that a scale is not suitable for studying growth if it 

involves making a priori assumptions about the shape of growth. A scale must be free 

to detect variation in the onset, duration, and intensity of critical periods of growth, and 

the attainment of an asymptote, as were seen in this study with height. These 

phenomena, like the notion of increasing variance with age, are plausible and intuitively 

compelling. This is not to say that a scale should be preferred because it exhibits such 

features. Only that a scale must be free to exhibit such features.

Another basis on which researchers may find a problem with time-indexed scales 

is shown again by the analogy to height. There were two ways that the variance of age 

equivalent height increased: 1) when age-conditional means of centimeter height became 

more alike (after age 14), and 2) when the variance of centimeter height increased (from 

ages 3 to 10). Likewise, the variance of grade equivalent measures of educational 

achievement can increase by, 1) grades becoming more alike in the behaviors represented 

by the test, and 2) students within grades becoming more different in the behaviors 

represented by the test. In other words, between-group differences are confounded with 

within-group differences. Educational researchers interested in growth will want to be 

aware that time-indexed measures have this potential for confounding.

The key arbitrary scaling convention in IRT is that the correct response to any test 

item is a function of achievement (0). This assumption specifies a two-way
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correspondence between numerical scale values (0) and the empirical observations (item 

responses) of the property being measured. This correspondence is one of the criteria 

for representational measurement. Yen (1986) discusses some distinctions between 

representational and index measures (grade equivalents being an index measure) that 

might be of interest to researchers choosing a scale for assessing cognitive growth. An 

illustration of the distinction between these kinds of measurement in this study, for 

example, is that test data and trends in grade-equivalent scores could be generated from 

assumptions about 0 ; neither test data nor trends in the 0  metric can be derived from 

assumptions about grade equivalent scores.

The particular form of the item response function is also arbitrary. Lord (1980, 

p84) argues that the logistic function does not necessarily make the 0  metric more 

desirable than other functions. He gives an example of a monotonic transformation of
4  if

0  to 0  . The item response function on 0  is not logistic, but is simple and interpretable. 

The transformation would have no effect on data-model fit or on the representational 

potential of the IRT model, but growth trends in the 0* metric would look quite different 

from those in the 0  metric. Thus, the logistic function is a key ingredient for the shape 

of growth trends when the model is applied to real data. It does not, however, 

determine the shape of growth trends independently of the data. This is an important 

distinction from the a priori linear growth rate of time-indexed scales.

It seems reasonable to suppose that trends in the log-odds of success, like grade 

equivalent trends, could be useful and practical for some purposes. A given amount of 

change on the 0  scale means there is a corresponding change in the log-odds of success
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on any given item calibrated to the scale. This study showed that there is a conditional 

relationship between trends in the within-grade variance of number correct scores (for 

on-level tests) and trends in the within-grade distribution of 0 . Increasing variability 

on a 0  scale means that differences are increasing among students in terms of their log- 

odds of success on items calibrated to the scale. This correspondence between the scale 

and test data could be an appropriate basis for conclusions about educational programs 

and achievement, particularly when test items sample a criterion domain of 

educationally or socially significant behaviors.

Based on the demonstration provided by this study, we recommend that when 

discrepancies between growth trends emerge with real data, investigators consider 

whether differences between models, as opposed to estimation problems and technical 

faults could account for the discrepancies. The discrepancies noted between variance 

trends in grade equivalent and IRT metrics (Schulz, et al., 1990; Lee and Wright, 1992) 

are exactly what one would expect if the 0  growth rate of the norm group for the tests 

used in these studies were negatively accelerated. [Growth in the norm group, but not 

necessarily the study group, would have to be negatively accelerated because the grade 

equivalent scores for the study group were norm-referenced.] This seems likely since 

Thurstonian and IRT growth rates for other standardized test batteries are negatively 

accelerated (Yen, 1986), and the mean growth rates for the study groups themselves were 

also slightly negatively accelerated (Schulz, et al., 1990; Lee and Wright, 1992).

Continued research and refinements of IRT methods and theory are needed to 

tease out how 0  growth trends depend on stage of development, skill, item bank, type
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of IRT model, and estimation procedure. Trends of decreasing variability in 0  may be 

partially a property of estimation methods (Williams, et al., 1995; Omar, 1996), as 

opposed to a property of the IRT model used. When the within-grade population 

variance of 0  on the NAEP mathematics subtest was estimated directly rather than 

relying on estimated thetas (Camilli, Yamamoto, and Wang, 1993) it increased from 

grade 4 to 8, but decreased from grade 8 to 12. Differences between IRT models may 

also be a factor. The within-grade variability of one-parameter IRT measures of reading 

decreased only slightly across primary grades (Schulz, et al., 1990; Lee and Wright, 1992), 

and the variability of similar measures of mathematics achievement remained constant 

(Lee and Wright, 1992). Becker and Forsyth (1992) found that the within-grade 

variability of one-parameter IRT, three-parameter IRT, and Thurstonian measures of 

performance on an ITED vocabulary test all increased across grades 9 to 12.

In summary, growth trends based on cognitive test scores are fundamentally 

arbitrary because these scores are ordinal. Since ordinal measurement scales allow such 

a large variety of transformations, compared to metric measurements, one should expect 

to find different shapes of growth functions across time, depending on the scale used— 

and, as we have tried to demonstrate in this inquiry, one should also expect different 

patterns of variances across time depending on the measurement scale. Some cognitive 

scales will show the increasing-variance-with-age trend; other measurement scales for 

the same trait (or even the same test) can be expected to indicate a decreasing-variance- 

with-age trend—or even a constant-variance-with-age pattern. As long as mental traits 

are measured with scores that only rank-order persons, it may well be impossible to
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determine the 'true' relationship between the age of children and the amount of 

variability in their cognitive performance.
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Footnotes

1) If the within-grade distribution of 0  were not normal, the formulas for the median 

(Equation (10)) and equal-density (see text) anchor points in Figure 3 might not be 

precise. (Equation (10) would still be valid for symmetric distributions, where the 

median equals the mean.) However, it seems likely that the true median and equal 

density anchor points would still show substantial positive acceleration, like the anchor 

points in Figure 3, given the negatively accelerated trend in mean 0 . The positive 

acceleration is quantified by the p2 coefficient in Equation (11). The p2 coefficient is used 

in Equations (13) and (14) to approximate the impact of interpolation on conditional 

grade equivalent distributions, but these equations do not require the corresponding 

conditional 0  distributions to be normal. In mapping through integer assignment, 0  is 

assumed to be normally distributed within grades in order to compute weights for 

integer grade-equivalent values. But in this respect also, it seems unlikely that true 

weights corresponding to reasonable departures from normality would substantially alter 

the results of this study, given the degree of negative acceleration in the equal density 

anchor points of Figure 3.
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