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Abstract

This paper presents a derivation of an average between-test overlap index 
as a function of the item exposure index, for fixed-length computerized 
adaptive tests. This relationship is used to investigate the simultaneous 
control of item exposure at both the item and test levels. Implications for 
practice as well as future research are also discussed.





Exploring the Relationship Between Item Exposure Rate 

and Test Overlap Rate in Computerized Adaptive Testing

The popularity of computerized adaptive tests (CATs) has increased in recent 

years due to the significant progress of computer technology. Many conventional 

paper-and-pencil (P&P) tests, like the Graduate Record Examination (GRE) and the 

Armed Services Vocational Aptitude Battery (ASVAB), are now offered in a CAT 

format. One practical advantage of CATs is that they can be administered on a flexible 

schedule rather than at fixed times. The convenience and flexibility for examinees, 

however, may severely compromise test security if item exposure is not well controlled. 

Because test security is always an im portant concern, especially in high stakes testing 

programs (e.g., college admissions, or certification and licensure), CATs cannot be 

implemented effectively in practice unless item exposure is well controlled.

Way (1998) stated that, to date, the methods used to avoid item overexposure in 

CATs fall into two general categories: (a) randomized item selection (e.g., McBride & 

Martin, 1983; Bergstrom, Lunz, & Gershon, 1992; Way Zara, & Leahy, 1996); and (b) 

conditional item selection (e.g., Sympson & Hetter, 1985; Davey & Parshall, 1995; 

Stocking & Lewis, 1995, 1998). Regardless of the item exposure control method used, 

item exposure rate and average item overlap are two indices commonly used to track 

item exposure in CATs (Way, 1998). Item exposure rate refers to the relative frequency 

with which an item is presented across all CAT administrations, that is, the proportion 

of all CATs in which an item is administered. Average item overlap is defined by Way



(1998) as the proportion (or percentage) of items shared by pairs of exams, averaged 

across all possible pairwise comparisons. It is im portant to note that Mills and Stocking 

(1996) use the term item overlap in referring to ''the extent to which one item may cue the 

correct response to another item or the extent to which two items depend on the same 

specific knowledge" (p. 294). To avoid confusion, and to provide a more accurate and 

descriptive nomenclature, we introduce the following terminology and definitions: (a) 

For a pairwise comparison between two fixed-length CATs that have been 

administered, the between-test overlap is the proportion of items on one test that also 

appear on the other test (i.e., the proportion of shared items); and (b) the average 

betiveen-test overlap is the arithmetic mean of the between-test overlaps across all 

possible pairwise comparisons. Furthermore, we use the terms average between-test 

overlap and test overlap rate interchangeably. The average between-test overlap, as 

defined above, is equivalent to the average item overlap defined by Way (1998). By 

considering both the item exposure rate and the average between-test overlap, item 

exposure can be monitored at the individual item level as well as the test level.

Despite the importance of both item exposure rate and test overlap rate in 

tracking item exposure control, few studies have investigated the effects of 

simultaneously controlling the magnitudes of these two indices. W hile most research to 

date has focused on item exposure control at the individual item level, Davey and 

Parshall (1995) proposed a conditioned item exposure control method designed to 

function at both the item and test levels. Although this method reduces the amount of 

test overlap and is more general than methods that function only at the individual item



level, it fails to control the test overlap rate exactly, that is, it fails to ensure desired 

levels of test security. Research with more comprehensive methods of controlling the 

item exposure rate and the test overlap rate simultaneously may be useful.

Based on the conceptual definitions of item exposure rate and average between- 

test overlap, it is to be expected that these two indices are highly related. If the average 

between-test overlap could be expressed as a function of item exposure rates, then it 

would not be necessary to undertake time-consuming pairwise comparisons of CATs to 

determine all between-test overlaps. Rather, the average between-test overlap could be 

more simply computed once the item exposure rates were known. Such a simplification 

would be especially efficient when the number of CATs administered (hence the 

number of pairwise comparisons) is large. Furthermore, if the average between-test 

overlap could be expressed as a function of the item exposure rates, then the 

relationship between these two indices could be investigated directly and easily. This, 

in turn, may provide insights into CAT design and im plementation considerations 

relevant to the sim ultaneous control of item exposure rates and average between-test 

overlap.

The purpose of this paper is to present an analytical derivation for the 

mathematical form of an average between-test overlap index as a function of the item 

exposure index, for fixed-length CATs. This algebraic relationship is used to investigate 

the simultaneous control of item exposure at both the item and test levels. Implications 

for practice as well as future research are also discussed.
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Theoretical Background

To facilitate the mathematical derivations which follow, consider the following 

hypothetical example: An item pool consists of n = 10 items, from which p  = 4 fixed- 

length CATs are administered, each CAT consisting of k = 5 items. Case 1 in Table 1 

shows the items that were administered in each of the four CATs, and Table 2 shows the 

number of times each item was used ( mi ).

See Tables 1-2 at end of report.

Making a pairwise comparison of the items administered in p l and p2(i.e., the 

first and second CATs, respectively), two items (2 and 4) were administered in both 

CATs. Thus, the between-test overlap for the p xp 2 comparison is 2/5. Calculating the 

between-test overlap for each possible pairwise comparison and averaging across all six 

such comparisons yields an average between-test overlap of

which can be written as



Algebraic Form o f  the Average Betzveen-Test Overlap

The numerator in Equation 2 is equivalent to the total number of times items 

were shared between pairs of CATs, across all possible pairwise comparisons. In 

general, this total is mathem atically determined by

(3)

Thus, in general, the average between-test overlap is mathematically defined as

if™')
f  = = (4)

where p denotes the number of fixed-length CATs administered, k denotes the number

of items in each of the CATs, n denotes the number of items in the pool, and m, denotes

the number of times item i was administered across all p CATs.

The item exposure rate of item i (i.e., the proportion of all CATs in which an item 

is administered) is defined as

m
r = —-  , i = 1, 2, 3 , . . . ,  n . (5)

P

Based on this definition, the sum of the item exposure rates across all items in the pool 

must equal the fixed test length, that is,

S ' ;  = k - <6)
i=i
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Thus, for any given fixed test length and pool size, the average item exposure rate will 

always be a constant:

n

5>^  k
r = -tL -  = -■  (7)

n n

Note that from Equation 7 it is clear that for a given fixed test length and pool size, the 

average item exposure rate is fixed. In other words, for a given ratio of pool size to 

fixed test length, the average item exposure rate is fixed, regardless of the number of 

CATs administered or the quality of the items in the pool.

Dividing both the numerator and denominator of Equation 4 by p" , substituting 

Equation 5 into Equation 4, and simplifying yields

i ' i ( w - i )
T = -------------- . (8)

k ( p -  1)

Expanding the numerator in Equation 8 yields

n np1Lri~ ~1Lri
T = -i=!---------1!— . (9)

k(p ~ 1)

Substituting Equation 6 into Equation 9 and simplifying yields

pit ,
T -  — ^ ------------------------------------------------------------------- . (10)

k ( p - l )  p~  1

Thus, the average between-test overlap can be expressed as a function of the item 

exposure rates, fixed test length, and number of CATs administered. Note that



substituting values from Table 2 into Equations 5 and 10 yields a numerical result (i.e., 

16/30) identical to that which was obtained from Equation 1, as expected.

Large-Sample Estimate o f the Average Between-Test Overlap

As the number of CATs that are administered increases (i.e., as p increases)

n n

pS't , Eo2
/ = )________ y /-I ______   ̂. ( l l )

k ( p - 1) p - \  k

thus, we can think of T as a large-sample estimate of T . Note that in cases where an 

item pool can be partitioned into mutually exclusive content area sub-domains, r 2

can be partitioned also, with respect to those sub-domains. Thus, it is possible to 

determine the proportion of the average between-test overlap accounted for by each 

content area sub-domain.

By completing the square on r 2 in the numerator of Equation 11, we obtain

f!
7,I K )2 + 2 r — -)
/=i V n n n

Distributing the summation operator over the terms in the numerator of Equation 12, 

replacing ^ r  with k (Equation 6), simplifying, and dividing both the numerator and 

denominator by n yields



Replacing k f n  in Equation 13 with r (Equation 7) yields

1=1 , - 2----------------- hr 2 - 2
f  = ------5------------ = ^ 1 ,  (14)

r r

where S2r denotes the variance of the item exposure rates. Thus, the large-sample 

estimate of the average between-test overlap is a function of the sample mean and 

variance of the item exposure rates.

The error in the estimate, T , is defined by

e ( f )  = f - t .  (15)

Substituting Equation 10 for T yields

— p J \ r2 1 —e (T)  = ----------- ------T .  (16)
k { p ~  1) p -  1

T r 2 ^ 1
Replacing — —  with T (Equation 11) and factoring ------- out of every term on the

k p - 1

right side of Equation 16 yields

e (T)  = -------
p -  1

which simplifies to

p T - \ - { p - \ ) T (17)

e(f)  = — I .  (18)
P -  1

By definition, 0 < r < l ;  therefore, r 2 < r , 0 < ^ r 2/ ^ V < l  (i.e., 0 < ^ r 2 j k  < 1), and

0 < T < 1. Thus, for any p > 1, e(T)  < 0 and T > T  . That the large-sample estimate of 

the average between-test overlap consistently exceeds its true value is a desirable



feature: One is guaranteed that the true value of the average between-test overlap is no

greater than its large-sample estimate. Another desirable feature of T is that e{T)  

decreases as p (i.e., the number of CATs administered) increases.

Implications of the Theory for Practice and Research

Closer inspection of the large-sample estimate of the average between-test

overlap ( T ; Equation 14) reveals that for a given pool size to fixed test length ratio, T is 

a linear function of S2r , the variance of the item exposure rates:

T = 4 - S r2 + f .  (19)
r

The slope of the straight line represented by Equation 19 is given by the pool size to

1 n
fixed test length ratio (i.e., — = —) and the y-intercept is the reciprocal of this ratio (i.e.,

r k

r = —). Figure 1 illustrates a family of curves of T versus Sr2 (defined by Equation 19) 
n

for several pool size to fixed test length ratios. Careful examination of Equation 19 and 

Figure 1 leads to several useful, practical implications for the design and development 

of CATs.

See Figure 1 at end of report.

Perhaps the most noteworthy feature of Equation 19 and Figure 1 concerns the y- 

intercept, which is obtained when S 2r = 0 .  When there is no variability in the item
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exposure rates (as would happen if item selection were completely randomized), the 

large-sample estimate of the average between-test overlap achieves its lowest possible

value, because r > 0 and Sr2 > 0 . Thus, r = k/n is a lower bound for T . Indeed, under 

completely randomized item selection for fixed-length CATs, the expected value of the 

between-test overlap is equal to k/n (see the appendix). The practical implication of 

this for CAT design is that item pool size must be at least 6.7 times as large as the fixed 

test length if the average between-test overlap is not to exceed 15%, as prescribed by 

Way (1998) for CATs used in college admissions decisions. Limiting the test overlap 

rate to 10% would require a pool size at least 10 times as large as the fixed test length. 

However, these ratios are deceiving, because they represent minimal prescriptions 

based on an assumption of completely randomized item selection. In practice, the 

psychometric qualities of items feature strongly in CAT item selection via some form of 

an item information function (e.g., Fisher item information), and under these 

circumstances S2r > 0 .

Figure 1 clearly indicates that for pool sizes at least 10 times as large as the fixed 

test length, an item exposure rate variance less than .005 guarantees that the average 

between-test overlap will be under 15%. An average between-test overlap below 10% is 

guaranteed when the variance of the item exposure rates is less than .002 with pool 

sizes at least 14 times as large as the fixed test length (or less than roughly .0014 with 

pool sizes at least 12 times as large as the fixed test length). More generally, Figure 1 

demonstrates that both the pool size to fixed test length ratio (the reciprocal of which is 

equal to the average item exposure rate) and the variance of the item exposure rates are

10



important in determining the average between-test overlap. It is im portant to note that, 

in addition to W ay's (1998) prescriptions for average item exposure and average 

percent overlap, the variance of the item exposure rates is a crucial element in CAT 

design. In fact, any given pool size to fixed test length ratio fixes the average item 

exposure rate, thus necessitating some degree of control over the variance of the item 

exposure rates if the average between-test overlap is to be controlled. Increasing the 

pool size to fixed test length ratio, alone, does not guarantee that the average between- 

test overlap will be maintained within desired limits; the variance of the item exposure 

rates must be controlled also.

These theoretically based insights are confirmed with empirical results. Table 3 

provides a summary of empirical item exposure data obtained from a CAT simulation 

study conducted by Chen and Ankenmann (1999), and corresponding algebraically 

obtained between-test overlap data. The item pool consisted of 360 ACT-Math items 

representing six content area sub-domains (pre-algebra, 23.33%; elementary algebra, 

16.67%; interm ediate algebra, 15%; coordinate geometry, 15%; plane geometry, 23.33%; 

and trigonometry, 6.67%) and the fixed test length was 20 items. Thus, the pool size to 

fixed test length ratio was 18:1. Adaptive item selection was implemented with the 

Fisher item information function and three parameter logistic item response model, 

content balancing was implemented with a multinomial model, and the Sympson and 

Hetter (1985) item exposure control method was used with a desired maximum item 

exposure rate of .20. A total of 7,000 CATs were simulated, 1,000 at each of seven 

proficiency levels (0 = -3, -2, -1, 0, 1, 2, 3). The empirically obtained mean ( r )  and

li



variance (Sr2) of the item exposure rates were used in Equations 10,14, and 18 to obtain 

T , T , and £ (7 ) , respectively.

See Table 3 at end of report.

Notice that without content balancing or item exposure control, the variance of 

the item exposure rates exceeded .01 and the average between-test overlap was about 

30%. Content balancing, alone, did little to reduce the variance of the item exposure 

rates and the average between-test overlap. Item  exposure control (in addition to 

content balancing) was required to reduce the variance of the item exposure rates to 

.002, which was enough to bring the average between-test overlap under 10%. With a 

pool size to fixed test length ratio of 18:1, Equation 14 indicates that an item exposure 

rate variance less than .0025 guarantees an average between-test overlap less than 10%. 

Notice that across all of the studied conditions the average item exposure rate remained 

constant. The impact of each studied condition on the variability of the item exposure 

rates is portrayed more vividly, perhaps, in the frequency distributions shown in 

Figure 2. Note that the means of these distributions are all the same (i.e.,

r = -  = —  =.0556). 
n 360

See Figure 2 at end of report.
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Further empirical confirmation of the significant relationship between the 

variance of the item exposure rates and the average between-test overlap, under 

varying item exposure control methods and item pool sizes, is provided in Table 4. All 

data reported in Table 4 were empirically obtained in a simulation study of CAT item 

exposure control methods by Chang (1998). In particular, the mean ( T ) and variance 

{ S j )  of the between-test overlaps were empirically obtained from all possible pairwise 

comparisons of the simulated CATs. Across item exposure control methods and item 

pool sizes, average between-test overlaps less than 15% were obtained only when the 

variance of the item exposure rates was less than .003. Under the condition in which no 

item exposure control was implemented, doubling the item pool size from 360 to 720 

(while keeping the fixed test length unchanged at 30) yielded a negligible decrease in 

the average between-test overlap from 37% to 34%. Changing the pool size to fixed test 

length ratio, alone, did little to reduce the test overlap rate. This negligible effect was 

also observed under the M cBride and M artin (1983) item exposure control method.

See Table 4 at end of report.

In the context of high stakes decisions (e.g., college adm issions, or certification 

and licensure), it may be desirable to control not only the average between-test 

overlap— as prescribed by Way (1998)— but also the maximum value or the variance of 

the between-test overlaps. Thus, it would be advantageous to determine the functional 

relationship between the item exposure rates and the variance of the between-test
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overlaps, if it indeed exists. Considering the data in Table 4, there is a very strong 

linear relationship between the variance of the item exposure rates ( S 2) and the 

variance of the between-test overlaps ( S72). Across the conditions in which /i = 360, 

99.995% of the variability in S 2 was accounted for by variability in S 2 . Across 

conditions in which the pool size was doubled (i.e., n = 120), 99.821% of the variability 

in S2 was accounted for by variability in S2 . However, a consideration of the cases 

presented in Table 1 suggests that the variance of the between-test overlaps cannot be 

expressed as a function of the item exposure rates.

Table 5 presents a summary of between-test overlap data corresponding to both 

examples (cases) presented in Table 1. Both of these cases give rise to identical item 

exposure rates, because the number of times each item was administered is the same. 

Note that the only difference between Case 1 and Case 2 concerns the second item 

administered in and p 2, denoted in Table 1 by the circled item numbers. Such a 

difference has no effect on the average between-test overlap, because the total number 

of times items are shared in all possible pairwise comparisons remains unchanged; that 

iS/ teasel) ~ (̂C;ise2) “  16/30. Such a difference does, however, affect the variance of the 

between-test overlaps; in particular, with T = 16/30, ^ (Casel) =.0356 whereas 

S 2(C.isc2) =.0222. The two cases in Table 1 give rise to identical item exposure rates but

different between-test overlap variances. In other words, the variance of the between- 

test overlaps is not uniquely determined by the item exposure rate, number of CATs
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administered, and fixed test length. This signals a need for further research concerning 

the relationship between item exposure rates and between-test overlap variance.

See Table 5 at end of report.

The mean and variance of the between-test overlap may not be the only 

im portant CAT design considerations. The maximum between-test overlap, or perhaps 

even several percentiles (e.g., P95, PTO, P15) of the between-test overlap distribution, may

be important also. Therefore, a useful future direction for research might be to 

investigate the relationship between the distributions of item exposure rate and 

between-test overlap. Finally, the derivations presented in this paper pertain only to 

fixed-length CATs, so a natural extension to this work would be to investigate the 

relationship between item exposure and test overlap in variable-length CATs.

The derivations presented in this paper provide theoretical evidence that, in 

fixed-length CATs, control of the average between-test overlap is achieved via the 

sample mean and variance of the item exposure rates. The mean of the item exposure 

rates is equal to the fixed test length divided by the item pool size, and is therefore 

easily manipulated. Control over the variance of the item exposure rates can be 

achieved via the maximum item exposure rate (rnwx). Therefore, this paper also

establishes a theoretical basis for concluding that item exposure control methods which 

implement a specification of rmM (e.g., Sympson & Hetter, 1985; Davey & Parshall, 1995; 

Stocking & Lewis, 1995, 1998) provide the most direct control over the average

15



between-test overlap. Empirical evidence of this conclusion has been provided by 

Chang (1998).
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Appendix

The purpose of this appendix is to show that the expected value of the between- 

test overlap, for a fixed-length CAT under com pletely randomized item selection, is 

equal to the fixed test length divided by the item pool size.

Consider an item pool consisting of n items, from which fixed-length CATs are 

administered, each CAT consisting of k items. Furthermore, each CAT is formed by 

randomly selecting k items from the pool. For a pairwise comparison between any two 

fixed-length CATs that have been administered, let the random variable Y denote the 

number of items on one test that also appear on the other test (i.e., the number of shared 

items). Then, the between-test overlap for such a pairwise comparison is given by Y /k . 

Possible values for the random variable Y are y = 0,1, 2 , . . . ,  k where v = 0 implies no 

shared items between CATs and y = k implies complete overlap or identical CATs.

Because Y is distributed as a hypergeom etric random variable, its probability 

function is defined as

and represents the probability that Y, the number of shared items, is equal to 

y -  0,1, 2 , . . . ,  k . The expected value of Y (DeGroot, 1986) is

Pr(K = y) (A -l)

(A-2)
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Therefore, the expected value of the between-test overlap for a fixed-length CAT under 

completely randomized item selection is

Note, also, that

The expected values defined by Equations A-2 and A-3 can be generalized to 

account for situations in which the item pool is partitioned into mutually exclusive 

content area sub-domains. Let tij represent the number of items in the pool belonging

to sub-domain j, and represent the number of items belonging to sub-domain j  that 

are administered in each CAT. Note that each k} is fixed across all CAT 

administrations. Each CAT is formed by randomly selecting k} items from sub-domain 

j  for j  = 1, 2, 3 , . . . ,  J  (i.e., altogether there are / sub-domains). Therefore, the total fixed 

test length of each CAT is given by

(A-4)

therefore,

Var -  
k

Var[K] _ ( n - k ) 2
k 2 ~ /i2 (>i - l )

(A-5)

K = (A-6)

and the total number of items in the pool is given by



For a pairwise comparison between any two fixed-length CATs that have been 

administered, with respect to sub-domain j, let Y} denote the number of shared items.

Then, the between-test overlap with respect to sub-domain j  for such a pairwise 

comparison is given by Y} j k j  . Possible values for the random variable K. are

y -  0 , 1, 2 , . . . ,  k j . From Equation A-2, the expected value of K. is

■fcl - ?■ (A-8)

If each item in the pool belongs to one and only one sub-domain, then each of the 

Yt is independent. If we let the random variable

z  = (A-9)
j =1

denote the total number of shared items in a pairwise comparison between any two 

CATs, then

m  = 1 4 yj] = I f -
j =1 y=l

(A-10)

Therefore, under completely randomized item selection, the expected value of the 

between-test overlap for a fixed-length CAT composed of items from a pool that is 

partitioned into mutually exclusive content area sub-domains is

;=i

E fZ j

J k 2 
E —
M n,

E^
(A -ll)
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TA BLE 1

Two Examples (Cases) of Items Administered in Each of 4 CATs

CAT Items administered

Case 1

2 (D 4 7 8

Pi 1 (D 4 6 2

P-i 7 9 2 5 8

p* 8 7 1 3 2

Case 2

Pi 2 (D 4 7 8

Pi 1 (D 4 6 2

P̂ 7 9 2 5 8

Pi 8 7 1 3 2

Case 2 and the circled item numbers are explained on page 14.

TABLE 2

Item Usage Corresponding to Both Cases Presented in Table 1

Item (/): 1 2 3 4 5 6 7 8 9  10

# of times item was used (/»,): 2 4 2 2 2 1 3 3 1  0
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TA BLE 3

Summary of Empirically Obtained Data From a CAT Simulation Study 
by Chen and Ankenmann (1999), and Corresponding Algebraically Obtained Data

Empirically obtained data 
From Chen and Ankenmann (1999)

Algebraically obtained data 
using Equations 10, 14, and 18

Condition Proportion 
of Item 

Pool not 
Used

r S; 'ma* T T e( T)

Without content 
balancing or item 
exposure control

.6086 .0556 .01376 1 .30316 .30326 -.00010

With content balancing .6306 .0556 .01131 .5660 .25894 .25905 -.00011

With content balancing 
and item exposure 
control

.2156 .0556 .00229 .2084 .09663 .09676 -.00013

Random item selection 0 .0556 7.14 x  1 0 '6 -0629 .05555 .05568 -.00013
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TA BLE 4

Summary of Empirically Obtained Data From a CAT Simulation Study
by Chang (1998)

Condition r s ; ' 'm u * T Sf T
rn jx

No Control .08333 .02419

k = 30, n = 360 

1 .37110 .08337 l

M&M .08333 .02346 .72012 .36362 .08092 l

S&H .08333 .00171 .13640 .10359 .00652 .6

D&P .08333 .00127 .12816 .09877 .00437 .4

S&L-U .08333 .00169 .13150 .10401 .00656 .63333

S&L-C .08333 .00052 .10342 .08947 .00259 .33333

No Control .04167 .01250

k = 30, n = 720 

1 .34028 .08043 1

M&M .04167 .01226 .64194 .33629 .07775 1

S&H .04167 .00257 .14348 .10286 .01143 .83333

D&P .04167 .00182 .13536 .08500 .00542 .56667

S&L-U .04167 .00256 .13886 .10308 .01152 .9

S&L-C .04167 .00073 .10032 .05919 .00249 .5

Notes. The variances of the item exposure rates reported by Chang (1998) were based only on those 
items in the pool that were administered. The variances, S ' , reported in this table are adjusted 
to include all items in the pool and ore, as such, estimates.

No Control: No item exposure control was implemented in this condition.
M&M: The 5-4-3-2-1 randomization technique of McBride and Martin (1983).
S&H: The Sympson and Hetter (1985) procedure, with a desired maximum item

exposure rate of .10.
D&P: The Davey and Parshall (1995) procedure.
S&L-U: The Stocking and Lewis (1995) unconditional multinomial procedure.
S&L-C: The Stocking and Lewis (1998) conditional procedure.

S f : The variance of the between-test overlaps.

T  :
m ;ix

The maximum value of the between-test overlaps.
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TA BLE 5

Summary of Between-Test Overlap Data Corresponding to Both Cases
Presented in Table 1

Between-test overlap

Pairwise comparison Case 1 Case 2

Pi Pi % %

P\Py %
3/
75

P\Px V
/ 5 %

PzP* 'A %

Pi Pa Vs
V
75

Pi Pa V75
V
75

Mean ( T ) 

Variance ( S j )

l% o

.0356

16/
/30

.0222
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Variance of Item Exposure Rates

Figure 1. Afam ilyof curves ofthe large-sampie estimate of average between-test overlaps
vs. the variance of the item exposure rates for several pool size to fixed test length ratios
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FIG U RE 2: Frequency distributions of item exposure rates under various CAT
simulation conditions studies by Chen and Ankenmann (1999).
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