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Abstract 

This study evaluates an imputation-based procedure for estimating nationally-referenced 

status and growth norms. Student, school, and district variables observed for both the sample and 

population are the basis for imputation. The procedure is applied to data from an assessment 

system that spans grades 3-8 to produce estimates of nationally-referenced status and conditional 

status norms. The estimated average population scores are higher than the sample scores in 

mathematics, but very similar in reading. 

The performance of the estimation method is evaluated using a holdout method for both 

system missingness (due to system-wide nonparticipation in the assessment system) and 

intermittent missingness (due to missing data in one or more grade levels). For system 

missingness, the average absolute difference of imputed mean and actual mean (in standard 

deviation units) was 0.07. In 79% of the holdout comparisons, the imputed mean was within 0.10 

standard deviations of the actual mean. The imputed standard deviation was within 10% of the 

actual standard deviation in 96% of the holdout comparisons. In 85% of cases, percentile ranks 

estimated from imputed data were within five points of those estimated from the actual data; 

56% of cases were within two points. In 92% of cases, the residual rank (similar to student 

growth percentile) estimated from imputed data was within five points of that estimated with 

actual data. The estimation method was very accurate for intermittent missingness. 

1. Introduction 

Most large-scale assessments for grades 3-8 in the United States support both criterion- 

and norm-referenced score interpretations. Criterion-referenced score interpretations describe 

performance with respect to an external criterion domain – such as proficiency or college and 

career readiness – and make no direct reference to the performance of other examinees. Norm-
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referencing typically addresses the question “How well did an examinee perform relative to 

others?” Norm-referencing can be used to describe a student’s current performance level (status 

norms) or a student’s current performance level, conditional on prior year performance 

(conditional status norms). In this study, we evaluate an imputation approach for estimating 

nationally-referenced status and conditional status norms. 

1.1 Status norms 

We refer to status norms as measures that are derived from marginal frequency 

distributions of test scores that are used to support norm-referenced interpretations. According to 

the Standards for Educational and Psychological Testing, “The validity of norm-referenced 

interpretations depends in part on the appropriateness of the reference group to which test scores 

are compared” (AERA, APA, NCME, 2014, p.97). For large-scale assessments of academic 

achievement, reference groups are usually defined by grade level and jurisdiction (e.g., district, 

state, state consortium, and national). Normative information is often reported with percentile 

ranks but can also include the mean, median, or other measures derived from the frequency 

distribution of test scores. 

We use nationally-referenced to refer to norms that use reference groups that strive to be 

nationally-representative (e.g., as if drawn from a simple random sample of students across the 

nation). Nationally-referenced norms are attractive because they allow users to understand their 

performance relative to all other students in the United States, providing meaningful comparative 

data. Because different assessment systems for grades 3-8 are used throughout the United States, 

it is difficult to support claims of nationally-representative status norms. Special studies using 

random sampling techniques can be used to estimate national norms, but such studies can be 

difficult to implement in a way that preserves random sampling. If students or schools select into 
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or out of the sample (e.g., choose to participate or not participate), the resulting sample is no 

longer a random sample, weakening claims of national representation. Moreover, participants in 

special studies may not be as motivated to perform their best if the test scores don’t have the 

same stakes as other state tests.  

The National Assessment of Educational Progress program (NAEP) is a longstanding 

assessment of the nation’s academic achievement. Among other things, NAEP produces 

nationally-representative estimates of mean test scores, percentiles, and percentage of students at 

or above certain achievement levels (NCES, 2009). NAEP uses sampling and weighting 

procedures to estimate nationally-representative status norms, but the validity of the estimates 

can be compromised by factors such as absenteeism or insufficient school participation. NAEP 

results have been linked to other assessment data for various purposes, such as fostering 

international comparisons of percentage of students performing at or above NAEP achievement 

levels (Phillips, 2007) and comparing proficiency standards across states (Braun & Qian, 2008). 

In this study, existing estimates of mean district scores based on linkages of state assessment data 

to NAEP are used to measure district performance using a common metric across states. As 

described later, the estimates of mean district scores are generally known for the population and 

are used for imputation. 

1.2 Growth (conditional status) norms 

Conditional status models (CSMs) are a family of growth models that are used to 

describe a student’s current year performance, relative to students with similar prior year test 

scores (Castellano & Ho, 2013). We refer to conditional status norms as measures that are 

derived from frequency distributions of current year test scores, conditional on prior year(s) test 

scores. Conditional status norms support norm-referenced interpretations of student growth. 
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While CSMs are only one type of growth model, conditional status and growth are used 

interchangeably in this paper. 

CSMs do not require vertical scales to support normative interpretations of student 

growth. Different CSMs vary by the method used to estimate the conditional score distribution. 

The Student Growth Percentile (SGP) model (Betebenner, 2009) is a widely-used type of CSM 

used to describe student growth in academic achievement from one academic year to another. 

The SGP model uses quantile regression to estimate the percentile rank of a student’s current 

year score, among academic peers (students with the same prior year scores). The SGP model 

can be contrasted to least-squares regression, which can also be used to regress current year score 

on prior year scores but has restrictive assumptions such as linearity, normality, and 

homoscedasticity of residuals. 

CSM-based normative growth measures are often reported as percentile ranks (e.g., SGPs 

and residual ranks from least-squares regression). Aggregate forms of CSM measures describe 

group-level growth and include the mean or median SGP, mean or median residual rank, and 

mean residual score (Castellano & Ho, 2015). Similar to status norms, CSM-based measures are 

interpreted with respect to the sample used to estimate the model. Because different assessment 

systems for grades 3-8 are used throughout the United States, CSMs usually reference students 

from one state or one assessment consortium. However, similar to status norms, some 

stakeholders may wish to interpret CSM-based measures with respect to all students nationally to 

enhance interpretation and comparability. 

Like all growth models, CSMs require test scores from two or more points in time 

(typically, two or more academic years). The challenge of estimating nationally-representative 

CSMs is similar to the challenge of estimating nationally-representative status norms, except that 
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multiple years of test scores are involved and conditional score distributions (rather than 

marginal distributions) are of interest.  

1.3 Study motivation and objectives 

 The study is motivated by the desire to estimate nationally-referenced status and growth 

norms for ACT Aspire® Summative, an assessment system that spans grades 3-10, with students 

generally tested at most once per year (ACT, 2017). The assessment system began in spring 2013 

and the data used for this study go through spring 2017; thus, students have at most five years of 

test scores. From spring 2013 through spring 2017, the assessment system was adopted for 

grades 3-8 by one state for four years, another state for two years, and another state for one year. 

In addition to the states, various districts across the United States have used the assessment 

system for one or more years. As described later, other data used to estimate the nationally-

referenced norms is only available for public schools and for grades 3-8. Thus, while the 

assessment system has been used by both public and non-public schools and includes grades 9 

and 10, we restrict the analysis to public schools and grades 3-8. 

 The primary objective of the study is to evaluate how well an imputation-based method 

performs for estimating nationally-representative status and growth norms. As described later, a 

holdout method is used to examine how well the method estimates norms for a) jurisdictions that 

participated in the assessment program and b) for cases with intermittent missing data.  

1.4 Overview of estimation method 

 The approach used to estimate nationally-referenced status and growth norms entails four 

steps: 

1. Construction of sample data set. A longitudinal data set spanning grades 3-8 is 

constructed that includes public school student test scores in English, math, reading, 
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science, and English Language Arts (ELA). The data set also includes student gender, 

race/ethnicity, school characteristics, and grade-specific NAEP-referenced measures of 

district performance. 

2. Construction of population data set. A longitudinal data set of the population of public 

school students in the United States, spanning grades 3-8, is constructed. This data set 

includes student gender, race/ethnicity, school characteristics, and grade-specific NAEP-

referenced measures of district performance. 

3. Imputation of population data set. After combining the sample and population data sets, 

imputation is used to obtain a population data set that includes imputed test scores for 

grades 3-8. 

4. Calculation of nationally-referenced norms. Using the imputed population data set, 

summary measures of the marginal and conditional test score distributions are calculated. 

Each of these four steps is now described in greater detail.      

2. Methods 

2.1 Construction of sample data set.  

The sample data set was constructed by merging grade-specific test scores (in English, 

math, reading, science, and ELA) with school characteristics, student-level demographic 

variables (race/ethnicity and gender), and grade-specific measures of district mean achievement. 

Because the assessment system has been operating for five years, the sample data set contains up 

to five years of test scores for grades 3-8, with test scores missing intermittently. Students were 

included in the sample data set if they tested at least once in math and reading, if they were 

enrolled in a public school with known NCES school identifier code, and if they were in a 

district that met the district inclusion criteria discussed later. Most students (51%) had one year 

of assessment data, 26% had two years, 10% had three years, 12% had four years, and 1% had 
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five years. By grade level, the number of students tested ranged from 310,550 for grade 3 to 

359,761 for grade 7. The overall sample size was 1,091,534. 

The school characteristics data was obtained from the National Center for Education 

Statistics (NCES) Common Core of Data for 2014-2015 (Glander, 2016) and included 

enrollment count, percentage of students eligible for free or reduced lunch (FRL), percentage of 

African American and Hispanic students, locale (rural, town, suburban, or urban), and 

geographic region (Midwest, Northeast, South, or West).  

2.1.1 Measures of district mean achievement 

The Stanford Education Data Archive (SEDA; Reardon, Ho, Shear, Fahle, Kalogrides, & 

DiSalvo, 2017) includes measures of academic achievement and achievement gaps for virtually 

all public school districts in the United States.  SEDA is intended to provide researchers with 

data “to generate evidence about what policies and contexts are most effective at increasing 

educational opportunity, and that such evidence will inform educational policy and practices” 

(Fahle, Shear, Kalogrides, Reardon, DiSalvo, & Ho, 2017). We use SEDA’s district achievement 

data to help estimate nationally-referenced status and growth norms. 

Version 2.0 of SEDA contains estimates of district achievement (means and standard 

deviations) for grades 3-8 in ELA and math for 2009 (2008-2009 school year) through 2015 

(2014-2015 school year). Estimates are provided for all students, as well as racial/ethnic 

subgroups (Asian, Black, Hispanic, and White). The SEDA achievement data is constructed 

using data from each state’s standardized testing program for grades 3-8 as required by federal 

law. Coarsened data for each district (e.g., percentage of students in each achievement level) is 

transformed to means and standard deviations using various forms of ordered probit models 

(Reardon, Shear, Castellano, & Ho, 2017). The state-referenced estimates are then placed on the 
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NAEP scale so that they are comparable across states, years, and grades (Reardon, Kalogrides, & 

Ho, 2017). Each state’s math scores are linked to the NAEP math scale, and each state’s ELA 

scores are linked to the NAEP reading scale. We refer the interested reader to SEDA’s technical 

documentation (Fahle et. al, 2017) for full details on the methodology used to generate the 

district statistics and for more details on other data available from SEDA. 

Because the district achievement data are central to our method for estimating nationally-

referenced norms, we only include students who belong to a district included in the SEDA data. 

SEDA provides a crosswalk file of NCES school codes to SEDA’s geographic school districts 

(GSDs), and it was used to map each student’s records to a district, consistent with how data are 

grouped in SEDA. For each grade level and year combination, we required that a district’s 

sample size (in our sample data set) was within 10% of the district’s sample size used for the 

SEDA estimates. This ensures that both the sample data set and SEDA district achievement 

statistics account for virtually all students in the district.  

For each record in the sample data set, the district mean and standard deviation of math 

and ELA scores is obtained from SEDA, along with the mean math and ELA scores for the 

racial/ethnic subgroups. The sample data set includes records from 2013 through 2017, while the 

SEDA data covers 2009 through 2015. For sample data from 2013 through 2015, we used the 

SEDA data from the same year. For 2016 and 2017, estimates of the SEDA data were obtained 

using linear extrapolation of the 2009-2015 data. The extrapolated estimates of the all-student 

statistics were then used for the sample data for 2016 and 2017. In addition to the year-specific 

SEDA data, pooled SEDA data was estimated by averaging across years within a district and 

grade level. The pooled SEDA estimates were used in cases where the year-specific data was not 
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otherwise available. The racial/ethnic subgroup statistics for 2016 and 2017 were based on the 

pooled SEDA estimates.  

2.2 Construction of population data set 

The population data set is designed to represent the population of public school students 

in the United States, while that population progresses through grades 3-8. The actual population 

varies somewhat by year, and we chose 8th graders of 2015 (2014-2015 school year) as the basis 

for creating the population data set. For each public school, the NCES data contains the number 

of 8th-grade students by gender and race/ethnicity. The NCES data also include other school 

characteristics that can potentially be useful for imputation (the same variables listed earlier 

when describing the sample data). Similar to the sample data set, the NCES data can be linked to 

the SEDA data set using NCES school code. While we began with the 8th-grade population as 

the basis for the population, we are interested in imputing the population’s test scores for grades 

3-8, and so we obtained the SEDA data for grades 3-8. The SEDA data for each grade level was 

obtained by linking to the appropriate year of SEDA data, assuming that students in the 8th-

grade population had progressed one grade level each year (2015 for grade 8, 2014 for grade 7, 

etc.).  Following these steps, the population is defined with respect to student ethnicity and 

gender, school characteristics, and district mean achievement for grades 3-8. 

The population data set has the same variables as the sample data set, except for the 

student test scores. Table 1 compares the sample to the population on student demographics and 

school characteristics. The sample consists of about 1.1 million students who tested between 

2013 and 2017 while in grades 3-8, so it contains students in several 8th-grade cohorts (2013 

through 2022). The population consists of over 3.7 million students and uses the 2015 cohort of 

8th-grade students as its basis. The sample is similar to the population on gender, but contains 



 10 
 

more African American students and fewer Hispanic and Asian students. The sample is mostly 

based in the South region of the United States (~94%), with very little representation from the 

Northeast and West regions. Schools located in rural and town settings are over-represented in 

the sample, relative to schools in suburban and urban settings. The percentage of students 

eligible for free or reduced lunch is similar for the sample (56%) and population (52%). 

Table 1. Comparing Sample to Population 

Variable Sample Population 
N students 1,091,534 3,725,600 
N districts 597 12,910 
Gender   
  Female 49.4 48.7 
  Male 50.4 51.2 
  Missing 0.3 <0.1 
Race/ethnicity   
  African American 27.6 15.6 
  Asian 1.5 4.9 
  Hispanic 8.2 24.7 
  Other 2.6 4.1 
  White 54.0 50.6 
  Missing 6.1 <0.1 
Census region   
  Midwest 3.9 21.0 
  Northeast 0.0 15.8 
  South 94.1 39.0 
  West 2.0 24.2 
School locale   
  Rural 35.0 18.9 
  Town 15.1 11.3 
  Suburban 25.8 40.1 
  Urban 23.1 29.2 
  Missing 1.1 0.6 
School FRL% (mean) 55.8 51.6 

 

2.3 Imputation of population data set. 

After concatenating (stacking) the sample and population data sets, imputation is used to 

obtain a population data set that includes imputed test scores for grades 3-8. The population data 
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set is missing all test scores, while the sample data set has intermittently missing test scores. The 

SAS MI procedure (SAS, 2011) is used to impute a complete data set. The MI procedure 

assumes that data are missing at random, meaning that missingness may depend on the observed 

data, but not the missing data (Rubin, 1976). The MI procedure also assumes that the parameters 

of the data model are distinct from the parameters of the missing data model. This means that 

knowing the parameters of the data model does provide information about the parameters of the 

missing data model, and vice-versa (Yuan, 2011). 

The appropriate imputation method used with the MI procedure generally depends on the 

pattern of missingness (monotone or arbitrary) and the type of imputed variable (continuous, 

ordinal, or nominal; Yuan, 2011). A monotone missing pattern occurs when missing a variable 

implies that all subsequent variables are also missing. Our data set has arbitrary missingness, 

contains mostly continuous variables (student test scores, all-student district mean achievement, 

racial/ethnic group-specific district mean achievement, school FRL%, school minority %, school 

enrollment), and contains three nominal variables (race/ethnicity, gender, and school locale). For 

data sets with arbitrary missingness and continuous variables, the recommended MI method uses 

Markov Chain Monte Carlo (MCMC) methods to simulate the joint posterior distribution of the 

observed and missing data. Each variable specified in the imputation model informs the 

imputation of all other variables.  

Using the SAS MI procedure with the MCMC method assumes that the data are drawn 

from a multivariate normal (MVN) distribution, so it is not appropriate for nominal variables. 

While our data set contains three nominal variables, we chose to use the MCMC method 

anyway, reasoning that the nominal variables (coded as dummy variables) are essentially used as 

covariates and the imputed values of the nominal variables are not important. SAS MI also 



 12 
 

supports predictive mean matching (PMM; Little, 1988), which does not assume MVN but 

instead draws imputed values from observed values and preserves the original shape of the 

frequency distribution. However, the missing data must be monotone to use PMM. The MICE 

(Multiple Imputation by Chained Equations) package (van Buuren & Groothuis-Oudshoorn, 

2011) also supports PMM, among other methods, and does not require monotone missing data. 

However, using the MICE function with PMM on our large data set was not feasible because it 

took too long to run. Later, we discuss how the MVN assumption affects the imputation of the 

student test score distributions, which do not generally conform to MVN. 

Because imputation adds an additional random component to the data, analyses of 

multiple imputed data sets is generally recommended (Yuan, 2011). We imputed five data sets.  

2.4. Calculation of nationally-referenced norms. 

Using the imputed population data set, nationally-referenced norms are calculated. 

Because the imputed data set includes complete vectors of test scores for grades 3-8, both grade-

specific marginal frequency distributions (for status norms) and joint frequency distributions (for 

conditional status norms) are available. For each grade level (3-8) and two subject areas (math 

and reading), the frequency distribution of imputed test scores is obtained. Means, standard 

deviations, selected percentiles (e.g., 5th, 25th, 50th, 75th, and 95th), and cumulative percentile 

ranks (corresponding to each score) are computed from the frequency distributions. 

Using the joint frequency distributions, CSMs such as the SGP model and multiple linear 

regression (MLR) can be fit to the data to produce CSM-based measures such as SGPs and ranks 

of residual scores. We found that the sample’s residual ranks estimated using MLR corresponded 

closely with SGPs derived using the SGP R package1 (Betebenner, VanIwaarden, Domingue, & 

                                                           
1 We used the studentGrowthPercentiles function with default settings. 
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Shang, 2017), with a median correlation of 0.993 across the ten subject area/grade level 

combinations (min=0.987, max=0.996). While the SGP model is preferred over MLR because of 

MLR’s restrictive assumptions, we focus on MLR-based residual ranks in this study because the 

models produce similar results and because the MLR model is easier to fit using the software 

used for imputation (SAS). Current-year test scores are regressed on the prior year score (linear 

and quadratic effects) in the same subject area. 

2.5 Evaluation of estimation method 

 The imputation-based estimation method produces nationally-representative status and 

growth norms if the imputed marginal and conditional score distributions match the actual 

distributions. The method may work well if data are missing at random (e.g., if the probability of 

missing test scores depends on student demographics, school characteristics, and/or district mean 

achievement statistics, but not on other unobserved variables) and if the unobserved test scores 

conform to MVN. Neither of these conditions is likely to be strictly met.  

 While we cannot prove that the population norms are nationally representative, we can 

examine how well the method recovers marginal and conditional distributions for students and 

jurisdictions that participated in the assessment program. If the method works well for members 

of the population that participated in the assessment program, it may be reasonable to expect it to 

work well for members of the population that did not. Using a holdout approach, imputation 

accuracy is examined for students and jurisdictions in the sample data set. Our study addresses 

two types of missing data – system missingness (e.g., all students in a jurisdiction are missing 

test scores because the jurisdiction did not participate in the assessment program) and 

intermittently missing test scores (e.g., a student’s test scores are observed for grades 3 and 4, but 

not 5-8). 
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2.5.1 Evaluation of estimation method for system missingness  

The sample data set was divided into seven jurisdictions. Recall that the assessment 

program has been used for grades 3-8 by three states and by individual districts in other states. 

We divided the three states into six jurisdictions according to locale (urban/suburban or 

rural/town). These six jurisdictions can this be thought of as “mini states,” and defining 

jurisdictions in this manner allows us to evaluate how the estimate procedure would recover 

score distributions for states that have not participated in the assessment program. The seventh 

jurisdiction represents the other districts from various states.  

The overall jurisdiction sample sizes ranged from 75,985 to 252,723. For each 

jurisdiction, the following steps are taken to examine accuracy of imputation for system 

missingness: 

1. For all students in the jurisdiction, set the test score data to missing in the sample data set 

(holdout sample). Concatenate the sample and population data sets to form the total data 

set. 

2. Impute data for the total data set. This step imputes test score data for the jurisdiction of 

interest, the population, and the intermittent missing test scores in the sample. 

3. Generate two sets of status norms for the jurisdiction of interest. The first set of norms is 

based on actual test scores that were held out in step 1. Let fh(Y) represent the marginal 

score distribution for the holdout sample, with cumulative frequency distribution (CFD) 

Fh(Y). The second set of norms is based on the imputed test score data for the 

jurisdiction. Let gh(Y) represent the marginal score distribution for the holdout sample, 

with CFD Gh(Y).  
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4. Compare the jurisdiction’s imputed and actual status norms. The following measures are 

calculated: 

a. d = (imputed mean – actual mean) / actual SD. 

b. dp (for p = 5, 25, 50, 75, 95) = (imputed pth percentile – actual pth percentile) / 

actual SD. 

c. SD ratio = imputed SD / actual SD. 

d. Frequency distribution of Drank, where Drank, i = Gh(i) - Fh(i) represents the 

difference in the CFD at the ith test score. Drank is assigned to each observed test 

score in the jurisdiction’s data set and represents the difference in the percentile 

ranks that would be assigned using the imputed data set and using the actual data 

set.   

5. Generate two sets of conditional status norms for the jurisdiction of interest. The first set 

of norms is based on the actual test scores that were held out in step 1. For each grade 

level pair (3-4, 4-5, etc.) and each subject, MLR is used to produce residual ranks.  

Similarly, MLR is applied to the imputed data set to produce a residual rank for each 

combination of test scores. The residual ranks from the imputed data set are then applied 

back to the actual data set so that it contains two residual ranks (one based on the MLR 

model fit using actual data set, one based on the MLR model fit with the imputed data 

set). 

6. Compare the jurisdiction’s imputed and actual conditional status norms. We are primarily 

interested in the distribution of Dgp, the difference in growth percentiles (residual ranks) 

based on the imputed and actual data sets. We calculate the mean, standard deviation, 5th 

percentile, and 95th percentile of Dgp. 
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Steps 1 through 6 for evaluating imputation accuracy are repeated for different 

jurisdictions used as the holdout sample (7), subject areas (2), and grade levels (6), providing up 

to 84 (7*2*6) comparisons of status norms based on imputed data or actual data. To minimize 

differences between imputed and actual status norms that is due to sampling variability, we 

require that the actual data set have at least 5,000 observed test scores for the jurisdiction of 

interest (for each combination of grade level and subject area). We are left with 80 of the 84 

comparisons. For examining conditional status norms, there are up to 70 comparisons (7 

jurisdictions, 2 subject areas, and 5 grade level pairs). We required at least 5,000 observed test 

score pairs, leaving us with 68 comparisons for examining the accuracy of imputed conditional 

status norms. 

2.5.2 Evaluation of estimation method for intermittent missingness  

The following steps are taken to examine accuracy of imputation for intermittently 

missing test scores: 

1. Consider students with observed test scores in math and reading for at least two grade 

levels. Randomly select 50% of the students to have their test scores for one grade 

held out. For each selected student, randomly select the grade to hold out and set all 

test scores for that grade to missing. Concatenate the sample and population data sets 

to form the total data set. 

2. Impute data for the total data set. This step imputes test scores for the population and 

all intermittent missing test scores in the sample (including those that were set to 

missing in step 1). 

3. For the holdout data, compare the imputed and actual test score distributions. The 

following measures of imputation accuracy are calculated: 
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a. d = (imputed mean – actual mean) / actual SD. 

b. SD ratio = imputed SD / actual SD. 

c. Mean of Drank and mean of |Drank| where Drank is the difference in the 

percentile ranks that would be assigned using the imputed data set and using 

the actual data set.   

3. Results 

3.1 Estimates of nationally-referenced status norms 

 First, we describe features of the nationally-referenced status norms that are generated 

using the process described in sections 2.1-2.4. The district mean NAEP-referenced scores are 

available for both the population and sample. Figure 1 shows frequency distributions of grade 8 

district mean math NAEP-referenced scores for the sample and population. While the 

population’s scores are higher than the sample’s, there is considerable overlap in the 

distributions.  

Figure 2 provides mean NAEP-referenced math scores for the population, sample before 

imputation, and sample after imputation (after imputation, the sample has no intermittent missing 

data). Across all grade levels, the mean NAEP-referenced math scores are lower for the sample 

relative to the population. Similarly, Figure 3 provides mean NAEP-referenced ELA scores for 

the population, sample before imputation, and sample after imputation. The mean NAEP-

referenced ELA scores are similar for the sample and population. 
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Figure 1. Distributions of grade 8 district mean NAEP-referenced math scores 
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Figure 2. Mean NAEP-referenced math scores 
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Figure 3. Mean NAEP-referenced ELA scores 
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Figure 4. Mean ACT Aspire math scores 
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Figure 5. Mean ACT Aspire reading scores 
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scores for grade 4 (239.7 for math, 218.8 for ELA) should be similar to the 2011 national public 

school estimates from NAEP for grade 4 (240 for math, 220 for reading; The Nation’s Report 

Card, 2017). In Figures 4 and 5, scores are increasing across grade levels, with the exception of 

grade 6-7 math. Because ACT Aspire is vertically-scaled, scores are expected to increase, though 

not necessarily linearly. 

Figures 2-5 also show that imputing the intermittently missing sample data tends to result 

in a small increase in mean test scores. The NAEP-referenced means show that the gap between 

the sample and population is increasing across grade levels, suggesting that growth in the sample 

is lower than that observed nationally. For example, in Figure 2, the sample mean math score is 

0.12 standard deviations below the population mean for grade 3 but 0.22 standard deviations 

below the population mean for grade 8.2 In Figure 4, the sample mean math score is 0.13 

standard deviations below the population mean for grade 3 and 0.15 standard deviations below 

the population mean for grade 8. The standard deviation of 2015 NAEP math scores increases 

somewhat from grade 4 (30) to grade 8 (37), while the standard deviation ACT Aspire math 

scores increases more drastically from grade 4 (4.3) to grade 8 (8.2).  In Figure 4, the gap 

between the sample and population appears to increase across grade levels. However, this is 

mostly due to the increasing standard deviation: In standard deviation units, the gap is very 

consistent across grade levels. 

The frequency distributions of grade 3 ACT Aspire math test scores are provided in 

Figure 6. The distribution for the population is shifted to the right of the sample distributions, 

resulting in the larger mean shown in Figure 4. Because the imputation software assumes that 

test scores are distributed as MVN, the imputed population frequency distribution is normally 

                                                           
2 Estimates of the standard deviations of 2015 NAEP math scores are 30 for grade 4 and 37 for grade 8. 
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distributed. While the sample distribution is not normal, the imputed sample distribution looks 

more like a normal distribution because intermittent missing values are imputed as MVN. 

 

Figure 6. Frequency distributions of grade 3 ACT Aspire math scores 
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3.2 Estimates of nationally-referenced conditional status norms 

 For each grade level pair and both subject areas, MLR was applied to the sample data 

(after imputation) and imputed population data set to obtain residual ranks. The residual ranks 

estimated using the population data were then applied back to the sample data set so that we 

could assess differences in sample and population-based residual ranks. 

 The largest differences in sample and population-based conditional status norms were 

observed for grade 4-5 math, where the sample-based residual ranks were 2.1 points higher than 

the population-based residual ranks, on average. In this case, the sample would overestimate a 

student’s growth percentile, relative to the growth percentile they would be assigned if based on 

the population data. However, the direction of the difference in residual ranks varied by grade 4 

math score. Figure 7 shows the predicted grade 5 math scores, by grade 4 math score.3 The solid 

lines represent the predicted values, and the dashed lines represent the upper and lower bounds of 

75% prediction intervals. For very low and very high grade 4 math scores, the sample-based 

predictions are higher than the population-based predictions. In these cases, the sample-based 

residual ranks are lower than the population-based residual ranks. For grade 4 scores in the 

middle of the distribution, the sample-based residual ranks are higher than the population-based 

residual ranks. 

 In Figure 7, we see that the sample’s regression lines are curvilinear, indicating that the 

quadratic effect was important, while the population’s lines are more linear. The population 

estimates are based on imputed data that was drawn from an MVN distribution, while the sample 

estimates are based on actual test scores. Further examination is needed to determine if the 

assumption of MVN forces linearity in the population’s regression lines.   

                                                           
3 Grade 4 scores from the 1st to 99th percentile are shown. 
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Figure 7. Sample and population-based regression results for grade 5 math 

 
Note: Solid lines are predicted values and dashed lines represent lower and upper bounds of 75% 
prediction interval. 
   

  Figure 7 (grade 4 to 5 math) demonstrates the largest difference (across grade levels and 

subjects) between sample and population conditional status norms. Figure 8 (grade 4 to 5 
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reading are very similar for the sample and population, with the predicted values and prediction 
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Figure 8. Sample and population-based regression results for grade 5 ACT Aspire reading 

 
Note: Solid lines are predicted values and dashed lines represent lower and upper bounds of 75% 
prediction interval. 
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3.3 Accuracy of status norms under system missingness 

 The accuracy of the status norms was assessed across the seven jurisdictions that were 

successively held out of the sample data set. As described earlier, there are 80 comparisons of 

imputed and actual marginal frequency distributions (7 holdout jurisdictions*6 grade levels*2 

subject areas, less 4 comparisons with N < 5,000). On average, the imputed mean was 0.01 

standard deviations below the actual mean (d=-0.01). Thus, on average, the imputation procedure 

came very close to correctly estimating the mean. However, this result is expected because 

jurisdictions are successively held out: If the mean is over-estimated for one jurisdiction, we 

would expect it to be under-estimated for other jurisdictions. Thus, d=-0.01 is not evidence of the 

accuracy of the imputation procedure. 

 At most, the imputed mean was 0.18 standard deviations below the mean (min d=-0.18) 

and 0.21 standard deviations above the mean (max d=0.21). Across the 80 comparisons, the 5th 

percentile of d was -0.15 and the 95th percentile was 0.16. For 79% of the comparisons, the 

imputed mean was within 0.10 standard deviations of the actual mean. 

 There was some evidence that the estimation method did not work as well in the tails of 

the distribution. On average, the imputed 5th percentile was 0.10 standard deviations below the 

actual 5th percentile. Similarly, the imputed 95th percentile was 0.04 standard deviations below 

the actual 95th percentile. The percentage of comparisons that the imputed percentile was within 

0.20 standard deviations of the actual percentile was 73% for the 5th percentile, 91% for the 25th 

percentile, 89% for the median, 84% for the 75th percentile, and 76% for the 95th percentile.  

 Across the 80 comparisons, the imputed standard deviation was 1% lower than the actual 

standard deviation on average (min=11% lower, max=11% higher). For 96% of the comparisons, 
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the imputed standard deviation was within 10% of the actual standard deviation; for 71% of the 

comparisons, the imputed standard deviation was within 5% of the actual standard deviation. 

 Percentile ranks were estimated from the imputed data and actual data set, and then 

applied back to the actual data set. Drank is the difference in percentile ranks (rank based on 

imputed data – rank based on actual data). Drank ranged from -10 to 13, with a 5th percentile of -

5, 25th percentile of -2, median of 0, 75th percentile of 2, and 95th percentile of 7 (Figure 9). In 

99% of cases, percentile ranks estimated from imputed data were within 10 points of those 

estimated from the actual data; 85% were within 5 points and 69% were within 3 points. 

Figure 9. Distribution of differences in percentile ranks based on imputed and actual data 
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3.4 Accuracy of conditional status norms 

 Residual ranks estimated using MLR were estimated from the imputed data and actual 

data, and then applied back to the actual data. dgp is the difference in growth percentiles (residual 

ranks) based on the imputed and actual data sets. dgp ranged from -81 to 20, with a 5th percentile 

of -6, 25th percentile of -1, median of 0, 75th percentile of 2, and 95th percentile of 5. In 92% of 

cases, the residual rank estimated from imputed data was within five points of that estimated 

with actual data; 79% of cases were within three points; and 54% were within one point. 

 Figure 10 illustrates a comparison of conditional status norms based on imputed and 

actual data (one jurisdiction, grade 6-7, math). Figure 10 shows the predicted grade 7 math 

scores, by grade 6 math score. The solid lines represent the predicted values, and the dashed lines 

represent the upper and lower bounds of 75% prediction intervals. For very low grade 6 math 

scores, the predictions based on the actual data are higher than the predictions based on the 

imputed data. In these cases, residual ranks based on actual data are lower than those based on 

the imputed data. For very high grade 6 math scores, the opposite is true. For grade 6 scores in 

the middle of the distribution, there is little difference between residual ranks based on imputed 

and actual data.  Overall, for this comparison, 98% of the students have a residual rank based on 

the imputed data that is within 2 points of the residual rank based on the actual data. 
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Figure 10. Regression results for grade 7 math based on actual and imputed data for one 
jurisdiction 
 

3.5 Accuracy of imputation for intermittent missingness 

 To examine the accuracy of imputing intermittently missing test scores, scores from one 

grade level were held out for half of the students who tested in at least two grade levels.  

Imputation for intermittent missingness was very accurate. Across the six grade levels and two 

subject areas, the imputed mean was at most 0.03 standard deviations from the actual mean 

(Table 2). For grade 8 math, the imputed mean was 0.03 standard deviations below the actual 

mean. 

  

400

405

410

415

420

425

430

435

440

445

407 409 411 413 415 417 419 421 423 425 427 429 431 433 435 437

G
ra

de
 7

 A
C

T
 A

sp
ir

e 
M

at
h 

Sc
or

e

Grade 6 ACT Aspire Math Score

Actual Imputed



 32 
 

Table 2. Accuracy of Imputation for Intermittently Missing Data 

Subject Grade N D SD 
ratio 

Mean 
Drank 

Mean 
|Drank| 

Math 

3 34,950 0.02 1.02 0.09 1.30 
4 50,678 -0.01 1.01 -0.20 0.88 
5 46,305 0.02 1.00 -1.57 2.11 
6 46,175 0.00 1.01 -0.54 0.95 
7 52,314 -0.01 1.01 -0.39 1.25 
8 37,237 -0.03 0.99 -0.26 1.79 

Reading 

3 34,950 0.00 1.00 -0.90 2.04 
4 50,678 -0.01 0.99 -0.02 1.05 
5 46,305 0.01 0.99 -0.74 1.12 
6 46,175 0.00 0.99 0.13 1.31 
7 52,314 0.00 1.00 0.31 1.68 
8 37,237 0.01 1.00 0.28 1.55 

Note: N = number of test scores held out and used to examine imputation accuracy   

 Similarly, the imputed standard deviations were very close to the actual standard 

deviations. The largest discrepancy occurred for grade 3 math, where the imputed standard 

deviation was 2% higher than the actual standard deviation. Percentile ranks were assigned to the 

actual data according to the actual frequency distribution and according to the frequency 

distribution of imputed data. The largest difference in mean percentile rank occurred for grade 5 

math, where percentile ranks based on the imputed data set were 1.57 points lower than those 

based on the actual data set. On average, the absolute difference in grade 5 math percentile ranks 

was 2.11. 

4. Discussion 

Nationally-referenced status and growth norms were estimated using a large sample of 

students who tested at least once in math and reading in grades 3-8. Nationally-referenced norms 

are desirable because they communicate how well a student or school performed with respect to 

a reference group that is meaningful for all jurisdictions. When the states and districts that 

participate in an assessment program change year-by-year, nationally-referenced norms can 
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provide greater stability in norms over time. Nationally-referenced norms for grades 3-8 also 

support vertically-moderated standard setting (Huynh & Schneider, 2005). By imputing 

intermittently missing test scores, we ensure that the sample is constant across grade levels and 

performance standards can be set consistently across grade levels. 

We demonstrated an imputation-based analytic approach for estimating nationally-

referenced norms. In contrast to design-based (sampling) methods, our approach is less costly 

because it doesn’t involve recruitment of schools, adherence to sampling protocols, additional 

testing, or special data collection. The tradeoff is that our method assumes that data are missing 

at random and that the missing data model is the same for assessment participants and 

nonparticipants. Because the missing at random assumption can’t be verified statistically, we 

have no guarantee that the procedure performed well for jurisdictions that did not participate in 

the assessment program. So the procedure can be used to produce nationally-referenced norms, 

but there is no guarantee that the norms are nationally representative. 

 Relative to the sample, the population estimates were higher in math and reading, though 

the reading differences were very small. Growth estimates for the population were greater than 

those for the sample, though the growth differences were very small. Using a holdout approach, 

we found that the imputation-based estimation procedure performed well for jurisdictions that 

participated in the assessment program, especially with respect to conditional status norms. The 

procedure performed very well for recovering the distributions of intermittently missing data.  

 The results suggest that nationally-representative norms are easier to achieve for 

conditional status norms, relative to status norms. One possible reason for this is that there is 

more variation across jurisdictions (e.g., districts) in status (e.g., mean percentile ranks) than 

conditional status (e.g., mean residual ranks). For example, the median (across subjects and 
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grade levels) standard deviation of mean percentile rank across districts was 6.5, while the 

median standard deviation of mean residual ranks across districts was 9.8. With less variation to 

explain, the imputation procedure is more accurate for conditional status norms.  

 A primary limitation of the study is that the results are specific to our special case of 

estimating nationally-referenced norms for the ACT Aspire summative assessment system. The 

sample size, pattern of intermittent missing data across subject areas and grade levels, and 

participation rates among states and districts across the United States are all unique to our special 

case, and all of these factors presumably affect the performance of the imputation procedure. 

This study does not inform the conditions for which the imputation-based estimation method 

works best. Additional research is needed to study the performance of the procedure under 

different scenarios of sample size, intermittent missingness, and selection factors for state and 

district participation in the assessment system. A simulation study could be conducted by 

simulating test scores for the entire population, removing data through specified missing data 

processes, and then using the imputation-based approach to try to estimate the population 

distributions.  

 While we showed that the imputation-based procedure worked well for estimating 

nationally-referenced conditional status norms, we only examined the case where one year of 

prior test scores are used. Conditional status models such as the SGP model can accommodate 

multiple years of test scores, and in general the reliability of SGPs increase with the inclusion of 

more prior year test scores. It’s possible that the performance of the imputation-based procedure 

for estimating conditional status norms is affected by the number of prior year test scores 

included. 
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 Analytic approaches other than imputation could have been used to estimate nationally-

referenced norms. We also considered methods based on propensity scores (Rosenbaum & 

Rubin, 1983). For example, the probability of participating in the assessment system could have 

been modeled using the same variables used for the imputation model (e.g., student 

demographics, school variables, and measures of district mean achievement). Inverse probability 

of treatment weighting (Rosenbaum, 1987) could then be used to assign weights to members of 

the sample so that the sample is representative of the population. One advantage of the 

propensity score approach is that we need not assume that the test scores are MVN, and the 

resulting population frequency distributions need not be normal. A hybrid approach that 

combines imputation with propensity score weighting is also possible. For example, imputation 

could be used only for intermittently missing data, and then the propensity score model could be 

applied. Additional research is needed to examine this method in comparison to the imputation-

based approach.  
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